Signal processing (scipy.signal)¶
Convolution¶
convolve(in1, in2[, mode]) | Convolve two N-dimensional arrays. |
correlate(in1, in2[, mode]) | Cross-correlate two N-dimensional arrays. |
fftconvolve(in1, in2[, mode]) | Convolve two N-dimensional arrays using FFT. |
convolve2d(in1, in2[, mode, boundary, fillvalue]) | Convolve two 2-dimensional arrays. |
correlate2d(in1, in2[, mode, boundary, ...]) | Cross-correlate two 2-dimensional arrays. |
sepfir2d((input, hrow, hcol) -> output) | Description: |
B-splines¶
bspline(x, n) | B-spline basis function of order n. |
cubic(x) | A cubic B-spline. |
quadratic(x) | A quadratic B-spline. |
gauss_spline(x, n) | Gaussian approximation to B-spline basis function of order n. |
cspline1d(signal[, lamb]) | Compute cubic spline coefficients for rank-1 array. |
qspline1d(signal[, lamb]) | Compute quadratic spline coefficients for rank-1 array. |
cspline2d((input {, lambda, precision}) -> ck) | Description: |
qspline2d((input {, lambda, precision}) -> qk) | Description: |
cspline1d_eval(cj, newx[, dx, x0]) | Evaluate a spline at the new set of points. |
cspline1d_eval(cj, newx[, dx, x0]) | Evaluate a spline at the new set of points. |
spline_filter(Iin[, lmbda]) | Smoothing spline (cubic) filtering of a rank-2 array. |
Filtering¶
order_filter(a, domain, rank) | Perform an order filter on an N-dimensional array. |
medfilt(volume[, kernel_size]) | Perform a median filter on an N-dimensional array. |
medfilt2d(input[, kernel_size]) | Median filter a 2-dimensional array. |
wiener(im[, mysize, noise]) | Perform a Wiener filter on an N-dimensional array. |
symiirorder1((input, c0, z1 {, ...) | Implement a smoothing IIR filter with mirror-symmetric boundary conditions |
symiirorder2((input, r, omega {, ...) | Implement a smoothing IIR filter with mirror-symmetric boundary conditions |
lfilter(b, a, x[, axis, zi]) | Filter data along one-dimension with an IIR or FIR filter. |
lfiltic(b, a, y[, x]) | Construct initial conditions for lfilter. |
lfilter_zi(b, a) | Compute an initial state zi for the lfilter function that corresponds to the steady state of the step response. |
filtfilt(b, a, x[, axis, padtype, padlen]) | A forward-backward filter. |
deconvolve(signal, divisor) | Deconvolves divisor out of signal. |
hilbert(x[, N, axis]) | Compute the analytic signal, using the Hilbert transform. |
get_window(window, Nx[, fftbins]) | Return a window. |
decimate(x, q[, n, ftype, axis]) | Downsample the signal by using a filter. |
detrend(data[, axis, type, bp]) | Remove linear trend along axis from data. |
resample(x, num[, t, axis, window]) | Resample x to num samples using Fourier method along the given axis. |
Filter design¶
bilinear(b, a[, fs]) | Return a digital filter from an analog one using a bilinear transform. |
firwin(numtaps, cutoff[, width, window, ...]) | FIR filter design using the window method. |
firwin2(numtaps, freq, gain[, nfreqs, ...]) | FIR filter design using the window method. |
freqs(b, a[, worN, plot]) | Compute frequency response of analog filter. |
freqz(b[, a, worN, whole, plot]) | Compute the frequency response of a digital filter. |
iirdesign(wp, ws, gpass, gstop[, analog, ...]) | Complete IIR digital and analog filter design. |
iirfilter(N, Wn[, rp, rs, btype, analog, ...]) | IIR digital and analog filter design given order and critical points. |
kaiser_atten(numtaps, width) | Compute the attenuation of a Kaiser FIR filter. |
kaiser_beta(a) | Compute the Kaiser parameter beta, given the attenuation a. |
kaiserord(ripple, width) | Design a Kaiser window to limit ripple and width of transition region. |
remez(numtaps, bands, desired[, weight, Hz, ...]) | Calculate the minimax optimal filter using the Remez exchange algorithm. |
unique_roots(p[, tol, rtype]) | Determine unique roots and their multiplicities from a list of roots. |
residue(b, a[, tol, rtype]) | Compute partial-fraction expansion of b(s) / a(s). |
residuez(b, a[, tol, rtype]) | Compute partial-fraction expansion of b(z) / a(z). |
invres(r, p, k[, tol, rtype]) | Compute b(s) and a(s) from partial fraction expansion: r,p,k |
Matlab-style IIR filter design¶
butter(N, Wn[, btype, analog, output]) | Butterworth digital and analog filter design. |
buttord(wp, ws, gpass, gstop[, analog]) | Butterworth filter order selection. |
cheby1(N, rp, Wn[, btype, analog, output]) | Chebyshev type I digital and analog filter design. |
cheb1ord(wp, ws, gpass, gstop[, analog]) | Chebyshev type I filter order selection. |
cheby2(N, rs, Wn[, btype, analog, output]) | Chebyshev type II digital and analog filter design. |
cheb2ord(wp, ws, gpass, gstop[, analog]) | Chebyshev type II filter order selection. |
ellip(N, rp, rs, Wn[, btype, analog, output]) | Elliptic (Cauer) digital and analog filter design. |
ellipord(wp, ws, gpass, gstop[, analog]) | Elliptic (Cauer) filter order selection. |
bessel(N, Wn[, btype, analog, output]) | Bessel/Thomson digital and analog filter design. |
Continuous-Time Linear Systems¶
freqresp(system[, w, n]) | Calculate the frequency response of a continuous-time system. |
lti(*args, **kwords) | Linear Time Invariant class which simplifies representation. |
lsim(system, U, T[, X0, interp]) | Simulate output of a continuous-time linear system. |
lsim2(system[, U, T, X0]) | Simulate output of a continuous-time linear system, by using |
impulse(system[, X0, T, N]) | Impulse response of continuous-time system. |
impulse2(system[, X0, T, N]) | Impulse response of a single-input, continuous-time linear system. |
step(system[, X0, T, N]) | Step response of continuous-time system. |
step2(system[, X0, T, N]) | Step response of continuous-time system. |
bode(system[, w, n]) | Calculate Bode magnitude and phase data of a continuous-time system. |
Discrete-Time Linear Systems¶
dlsim(system, u[, t, x0]) | Simulate output of a discrete-time linear system. |
dimpulse(system[, x0, t, n]) | Impulse response of discrete-time system. |
dstep(system[, x0, t, n]) | Step response of discrete-time system. |
LTI Representations¶
tf2zpk(b, a) | Return zero, pole, gain (z,p,k) representation from a numerator, denominator representation of a linear filter. |
zpk2tf(z, p, k) | Return polynomial transfer function representation from zeros |
tf2ss(num, den) | Transfer function to state-space representation. |
ss2tf(A, B, C, D[, input]) | State-space to transfer function. |
zpk2ss(z, p, k) | Zero-pole-gain representation to state-space representation |
ss2zpk(A, B, C, D[, input]) | State-space representation to zero-pole-gain representation. |
cont2discrete(sys, dt[, method, alpha]) | Transform a continuous to a discrete state-space system. |
Waveforms¶
chirp(t, f0, t1, f1[, method, phi, vertex_zero]) | Frequency-swept cosine generator. |
gausspulse(t[, fc, bw, bwr, tpr, retquad, ...]) | Return a Gaussian modulated sinusoid: |
sawtooth(t[, width]) | Return a periodic sawtooth or triangle waveform. |
square(t[, duty]) | Return a periodic square-wave waveform. |
sweep_poly(t, poly[, phi]) | Frequency-swept cosine generator, with a time-dependent frequency. |
Window functions¶
get_window(window, Nx[, fftbins]) | Return a window. |
barthann(M[, sym]) | Return a modified Bartlett-Hann window. |
bartlett(M[, sym]) | Return a Bartlett window. |
blackman(M[, sym]) | Return a Blackman window. |
blackmanharris(M[, sym]) | Return a minimum 4-term Blackman-Harris window. |
bohman(M[, sym]) | Return a Bohman window. |
boxcar(M[, sym]) | Return a boxcar or rectangular window. |
chebwin(M, at[, sym]) | Return a Dolph-Chebyshev window. |
cosine(M[, sym]) | Return a window with a simple cosine shape. |
flattop(M[, sym]) | Return a flat top window. |
gaussian(M, std[, sym]) | Return a Gaussian window. |
general_gaussian(M, p, sig[, sym]) | Return a window with a generalized Gaussian shape. |
hamming(M[, sym]) | Return a Hamming window. |
hann(M[, sym]) | Return a Hann window. |
kaiser(M, beta[, sym]) | Return a Kaiser window. |
nuttall(M[, sym]) | Return a minimum 4-term Blackman-Harris window according to Nuttall. |
parzen(M[, sym]) | Return a Parzen window. |
slepian(M, width[, sym]) | Return a digital Slepian (DPSS) window. |
triang(M[, sym]) | Return a triangular window. |
Wavelets¶
cascade(hk[, J]) | Return (x, phi, psi) at dyadic points K/2**J from filter coefficients. |
daub(p) | The coefficients for the FIR low-pass filter producing Daubechies wavelets. |
morlet(M[, w, s, complete]) | Complex Morlet wavelet. |
qmf(hk) | Return high-pass qmf filter from low-pass |
ricker(points, a) | Return a Ricker wavelet, also known as the “Mexican hat wavelet”. |
cwt(data, wavelet, widths) | Continuous wavelet transform. |
Peak finding¶
find_peaks_cwt(vector, widths[, wavelet, ...]) | Attempt to find the peaks in a 1-D array. |
argrelmin(data[, axis, order, mode]) | Calculate the relative minima of data. |
argrelmax(data[, axis, order, mode]) | Calculate the relative maxima of data. |
argrelextrema(data, comparator[, axis, ...]) | Calculate the relative extrema of data. |
Spectral Analysis¶
periodogram(x[, fs, window, nfft, detrend, ...]) | Estimate power spectral density using a periodogram. |
welch(x[, fs, window, nperseg, noverlap, ...]) | Estimate power spectral density using Welch’s method. |
lombscargle(x, y, freqs) | Computes the Lomb-Scargle periodogram. |