numpy.float_power¶

numpy.
float_power
(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'float_power'>¶ First array elements raised to powers from second array, elementwise.
Raise each base in x1 to the positionallycorresponding power in x2. x1 and x2 must be broadcastable to the same shape. This differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 so that the result is always inexact. The intent is that the function will return a usable result for negative powers and seldom overflow for positive powers.
New in version 1.12.0.
Parameters:  x1 : array_like
The bases.
 x2 : array_like
The exponents.
 out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshlyallocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
 where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
 **kwargs
For other keywordonly arguments, see the ufunc docs.
Returns:  y : ndarray
The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are scalars.
See also
power
 power function that preserves type
Examples
Cube each element in a list.
>>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.float_power(x1, 3) array([ 0., 1., 8., 27., 64., 125.])
Raise the bases to different exponents.
>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.float_power(x1, x2) array([ 0., 1., 8., 27., 16., 5.])
The effect of broadcasting.
>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.float_power(x1, x2) array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]])