numpy.dtype¶
- class numpy.dtype[source]¶
Create a data type object.
A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be constructed from different combinations of fundamental numeric types.
Parameters: obj :
Object to be converted to a data type object.
align : bool, optional
Add padding to the fields to match what a C compiler would output for a similar C-struct. Can be True only if obj is a dictionary or a comma-separated string. If a struct dtype is being created, this also sets a sticky alignment flag isalignedstruct.
copy : bool, optional
Make a new copy of the data-type object. If False, the result may just be a reference to a built-in data-type object.
See also
Examples
Using array-scalar type:
>>> np.dtype(np.int16) dtype('int16')
Record, one field name ‘f1’, containing int16:
>>> np.dtype([('f1', np.int16)]) dtype([('f1', '<i2')])
Record, one field named ‘f1’, in itself containing a record with one field:
>>> np.dtype([('f1', [('f1', np.int16)])]) dtype([('f1', [('f1', '<i2')])])
Record, two fields: the first field contains an unsigned int, the second an int32:
>>> np.dtype([('f1', np.uint), ('f2', np.int32)]) dtype([('f1', '<u4'), ('f2', '<i4')])
Using array-protocol type strings:
>>> np.dtype([('a','f8'),('b','S10')]) dtype([('a', '<f8'), ('b', '|S10')])
Using comma-separated field formats. The shape is (2,3):
>>> np.dtype("i4, (2,3)f8") dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:
>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)]) dtype([('hello', '<i4', 3), ('world', '|V10')])
Subdivide int16 into 2 int8‘s, called x and y. 0 and 1 are the offsets in bytes:
>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
Using dictionaries. Two fields named ‘gender’ and ‘age’:
>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) dtype([('gender', '|S1'), ('age', '|u1')])
Offsets in bytes, here 0 and 25:
>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) dtype([('surname', '|S25'), ('age', '|u1')])
Methods
newbyteorder([new_order]) Return a new dtype with a different byte order.