numpy.ma.sort¶
- numpy.ma.sort(a, axis=-1, kind='quicksort', order=None, endwith=True, fill_value=None)[source]¶
Sort the array, in-place
Parameters : a : array_like
Array to be sorted.
axis : int, optional
Axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis.
kind : {‘quicksort’, ‘mergesort’, ‘heapsort’}, optional
Sorting algorithm. Default is ‘quicksort’.
order : list, optional
When a is a structured array, this argument specifies which fields to compare first, second, and so on. This list does not need to include all of the fields.
endwith : {True, False}, optional
Whether missing values (if any) should be forced in the upper indices (at the end of the array) (True) or lower indices (at the beginning).
fill_value : {var}, optional
Value used internally for the masked values. If fill_value is not None, it supersedes endwith.
Returns : sorted_array : ndarray
Array of the same type and shape as a.
See also
- ndarray.sort
- Method to sort an array in-place.
- argsort
- Indirect sort.
- lexsort
- Indirect stable sort on multiple keys.
- searchsorted
- Find elements in a sorted array.
Notes
See sort for notes on the different sorting algorithms.
Examples
>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) >>> # Default >>> a.sort() >>> print a [1 3 5 -- --]
>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) >>> # Put missing values in the front >>> a.sort(endwith=False) >>> print a [-- -- 1 3 5]
>>> a = ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) >>> # fill_value takes over endwith >>> a.sort(endwith=False, fill_value=3) >>> print a [1 -- -- 3 5]