numpy.correlate¶
- numpy.correlate(a, v, mode='valid', old_behavior=False)[source]¶
Cross-correlation of two 1-dimensional sequences.
This function computes the correlation as generally defined in signal processing texts:
z[k] = sum_n a[n] * conj(v[n+k])
with a and v sequences being zero-padded where necessary and conj being the conjugate.
Parameters : a, v : array_like
Input sequences.
mode : {‘valid’, ‘same’, ‘full’}, optional
old_behavior : bool
If True, uses the old behavior from Numeric, (correlate(a,v) == correlate(v,a), and the conjugate is not taken for complex arrays). If False, uses the conventional signal processing definition.
See also
- convolve
- Discrete, linear convolution of two one-dimensional sequences.
Examples
>>> np.correlate([1, 2, 3], [0, 1, 0.5]) array([ 3.5]) >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same") array([ 2. , 3.5, 3. ]) >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full") array([ 0.5, 2. , 3.5, 3. , 0. ])