This is documentation for an old release of NumPy (version 1.8.0). Read this page Search for this page in the documentation of the latest stable release (version > 1.17).
Mathematical functions
Trigonometric functions
sin(x[, out]) |
Trigonometric sine, element-wise. |
cos(x[, out]) |
Cosine elementwise. |
tan(x[, out]) |
Compute tangent element-wise. |
arcsin(x[, out]) |
Inverse sine, element-wise. |
arccos(x[, out]) |
Trigonometric inverse cosine, element-wise. |
arctan(x[, out]) |
Trigonometric inverse tangent, element-wise. |
hypot(x1, x2[, out]) |
Given the “legs” of a right triangle, return its hypotenuse. |
arctan2(x1, x2[, out]) |
Element-wise arc tangent of x1/x2 choosing the quadrant correctly. |
degrees(x[, out]) |
Convert angles from radians to degrees. |
radians(x[, out]) |
Convert angles from degrees to radians. |
unwrap(p[, discont, axis]) |
Unwrap by changing deltas between values to 2*pi complement. |
deg2rad(x[, out]) |
Convert angles from degrees to radians. |
rad2deg(x[, out]) |
Convert angles from radians to degrees. |
Hyperbolic functions
sinh(x[, out]) |
Hyperbolic sine, element-wise. |
cosh(x[, out]) |
Hyperbolic cosine, element-wise. |
tanh(x[, out]) |
Compute hyperbolic tangent element-wise. |
arcsinh(x[, out]) |
Inverse hyperbolic sine elementwise. |
arccosh(x[, out]) |
Inverse hyperbolic cosine, elementwise. |
arctanh(x[, out]) |
Inverse hyperbolic tangent elementwise. |
Rounding
around(a[, decimals, out]) |
Evenly round to the given number of decimals. |
round_(a[, decimals, out]) |
Round an array to the given number of decimals. |
rint(x[, out]) |
Round elements of the array to the nearest integer. |
fix(x[, y]) |
Round to nearest integer towards zero. |
floor(x[, out]) |
Return the floor of the input, element-wise. |
ceil(x[, out]) |
Return the ceiling of the input, element-wise. |
trunc(x[, out]) |
Return the truncated value of the input, element-wise. |
Sums, products, differences
prod(a[, axis, dtype, out, keepdims]) |
Return the product of array elements over a given axis. |
sum(a[, axis, dtype, out, keepdims]) |
Sum of array elements over a given axis. |
nansum(a[, axis, dtype, out, keepdims]) |
Return the sum of array elements over a given axis treating Not a |
cumprod(a[, axis, dtype, out]) |
Return the cumulative product of elements along a given axis. |
cumsum(a[, axis, dtype, out]) |
Return the cumulative sum of the elements along a given axis. |
diff(a[, n, axis]) |
Calculate the n-th order discrete difference along given axis. |
ediff1d(ary[, to_end, to_begin]) |
The differences between consecutive elements of an array. |
gradient(f, *varargs) |
Return the gradient of an N-dimensional array. |
cross(a, b[, axisa, axisb, axisc, axis]) |
Return the cross product of two (arrays of) vectors. |
trapz(y[, x, dx, axis]) |
Integrate along the given axis using the composite trapezoidal rule. |
Exponents and logarithms
exp(x[, out]) |
Calculate the exponential of all elements in the input array. |
expm1(x[, out]) |
Calculate exp(x) - 1 for all elements in the array. |
exp2(x[, out]) |
Calculate 2**p for all p in the input array. |
log(x[, out]) |
Natural logarithm, element-wise. |
log10(x[, out]) |
Return the base 10 logarithm of the input array, element-wise. |
log2(x[, out]) |
Base-2 logarithm of x. |
log1p(x[, out]) |
Return the natural logarithm of one plus the input array, element-wise. |
logaddexp(x1, x2[, out]) |
Logarithm of the sum of exponentiations of the inputs. |
logaddexp2(x1, x2[, out]) |
Logarithm of the sum of exponentiations of the inputs in base-2. |
Other special functions
i0(x) |
Modified Bessel function of the first kind, order 0. |
sinc(x) |
Return the sinc function. |
Floating point routines
signbit(x[, out]) |
Returns element-wise True where signbit is set (less than zero). |
copysign(x1, x2[, out]) |
Change the sign of x1 to that of x2, element-wise. |
frexp(x[, out1, out2]) |
Split the number, x, into a normalized fraction (y1) and exponent (y2) |
ldexp(x1, x2[, out]) |
Compute y = x1 * 2**x2. |
Arithmetic operations
add(x1, x2[, out]) |
Add arguments element-wise. |
reciprocal(x[, out]) |
Return the reciprocal of the argument, element-wise. |
negative(x[, out]) |
Returns an array with the negative of each element of the original array. |
multiply(x1, x2[, out]) |
Multiply arguments element-wise. |
divide(x1, x2[, out]) |
Divide arguments element-wise. |
power(x1, x2[, out]) |
First array elements raised to powers from second array, element-wise. |
subtract(x1, x2[, out]) |
Subtract arguments, element-wise. |
true_divide(x1, x2[, out]) |
Returns a true division of the inputs, element-wise. |
floor_divide(x1, x2[, out]) |
Return the largest integer smaller or equal to the division of the inputs. |
fmod(x1, x2[, out]) |
Return the element-wise remainder of division. |
mod(x1, x2[, out]) |
Return element-wise remainder of division. |
modf(x[, out1, out2]) |
Return the fractional and integral parts of an array, element-wise. |
remainder(x1, x2[, out]) |
Return element-wise remainder of division. |
Handling complex numbers
angle(z[, deg]) |
Return the angle of the complex argument. |
real(val) |
Return the real part of the elements of the array. |
imag(val) |
Return the imaginary part of the elements of the array. |
conj(x[, out]) |
Return the complex conjugate, element-wise. |
Miscellaneous
convolve(a, v[, mode]) |
Returns the discrete, linear convolution of two one-dimensional sequences. |
clip(a, a_min, a_max[, out]) |
Clip (limit) the values in an array. |
sqrt(x[, out]) |
Return the positive square-root of an array, element-wise. |
square(x[, out]) |
Return the element-wise square of the input. |
absolute(x[, out]) |
Calculate the absolute value element-wise. |
fabs(x[, out]) |
Compute the absolute values elementwise. |
sign(x[, out]) |
Returns an element-wise indication of the sign of a number. |
maximum(x1, x2[, out]) |
Element-wise maximum of array elements. |
minimum(x1, x2[, out]) |
Element-wise minimum of array elements. |
fmax(x1, x2[, out]) |
Element-wise maximum of array elements. |
fmin(x1, x2[, out]) |
Element-wise minimum of array elements. |
nan_to_num(x) |
Replace nan with zero and inf with finite numbers. |
real_if_close(a[, tol]) |
If complex input returns a real array if complex parts are close to zero. |
interp(x, xp, fp[, left, right]) |
One-dimensional linear interpolation. |