Laguerre Module (numpy.polynomial.laguerre)
New in version 1.6.0.
This module provides a number of objects (mostly functions) useful for
dealing with Laguerre series, including a Laguerre class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).
Laguerre Class
| Laguerre(coef[, domain, window]) | 
A Laguerre series class. | 
 
Basics
| lagval(x, c[, tensor]) | 
Evaluate a Laguerre series at points x. | 
| lagval2d(x, y, c) | 
Evaluate a 2-D Laguerre series at points (x, y). | 
| lagval3d(x, y, z, c) | 
Evaluate a 3-D Laguerre series at points (x, y, z). | 
| laggrid2d(x, y, c) | 
Evaluate a 2-D Laguerre series on the Cartesian product of x and y. | 
| laggrid3d(x, y, z, c) | 
Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z. | 
| lagroots(c) | 
Compute the roots of a Laguerre series. | 
| lagfromroots(roots) | 
Generate a Laguerre series with given roots. | 
 
Fitting
| lagfit(x, y, deg[, rcond, full, w]) | 
Least squares fit of Laguerre series to data. | 
| lagvander(x, deg) | 
Pseudo-Vandermonde matrix of given degree. | 
| lagvander2d(x, y, deg) | 
Pseudo-Vandermonde matrix of given degrees. | 
| lagvander3d(x, y, z, deg) | 
Pseudo-Vandermonde matrix of given degrees. | 
 
Calculus
| lagder(c[, m, scl, axis]) | 
Differentiate a Laguerre series. | 
| lagint(c[, m, k, lbnd, scl, axis]) | 
Integrate a Laguerre series. | 
 
Algebra
| lagadd(c1, c2) | 
Add one Laguerre series to another. | 
| lagsub(c1, c2) | 
Subtract one Laguerre series from another. | 
| lagmul(c1, c2) | 
Multiply one Laguerre series by another. | 
| lagmulx(c) | 
Multiply a Laguerre series by x. | 
| lagdiv(c1, c2) | 
Divide one Laguerre series by another. | 
| lagpow(c, pow[, maxpower]) | 
Raise a Laguerre series to a power. | 
 
Quadrature
| laggauss(deg) | 
Gauss-Laguerre quadrature. | 
| lagweight(x) | 
Weight function of the Laguerre polynomials. |