Differentiate a Laguerre series.
Returns the Laguerre series coefficients c differentiated m times along axis. At each iteration the result is multiplied by scl (the scaling factor is for use in a linear change of variable). The argument c is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series 1*L_0 + 2*L_1 + 3*L_2 while [[1,2],[1,2]] represents 1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y) if axis=0 is x and axis=1 is y.
Parameters : | c: array_like :
m : int, optional
scl : scalar, optional
axis : int, optional
|
---|---|
Returns : | der : ndarray
|
See also
Notes
In general, the result of differentiating a Laguerre series does not resemble the same operation on a power series. Thus the result of this function may be “unintuitive,” albeit correct; see Examples section below.
Examples
>>> from numpy.polynomial.laguerre import lagder
>>> lagder([ 1., 1., 1., -3.])
array([ 1., 2., 3.])
>>> lagder([ 1., 0., 0., -4., 3.], m=2)
array([ 1., 2., 3.])