scipy.special.lpmv#
- scipy.special.lpmv(m, v, x, out=None) = <ufunc 'lpmv'>#
Associated Legendre function of integer order and real degree.
Defined as
\[P_v^m = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_v(x)\]where
\[P_v = \sum_{k = 0}^\infty \frac{(-v)_k (v + 1)_k}{(k!)^2} \left(\frac{1 - x}{2}\right)^k\]is the Legendre function of the first kind. Here \((\cdot)_k\) is the Pochhammer symbol; see
poch
.- Parameters
- marray_like
Order (int or float). If passed a float not equal to an integer the function returns NaN.
- varray_like
Degree (float).
- xarray_like
Argument (float). Must have
|x| <= 1
.- outndarray, optional
Optional output array for the function results
- Returns
- pmvscalar or ndarray
Value of the associated Legendre function.
See also
Notes
Note that this implementation includes the Condon-Shortley phase.
References
- 1
Zhang, Jin, “Computation of Special Functions”, John Wiley and Sons, Inc, 1996.