scipy.special.eval_sh_legendre#
- scipy.special.eval_sh_legendre(n, x, out=None) = <ufunc 'eval_sh_legendre'>#
Evaluate shifted Legendre polynomial at a point.
These polynomials are defined as
\[P_n^*(x) = P_n(2x - 1)\]where \(P_n\) is a Legendre polynomial. See 2.2.11 in [AS] for details.
- Parameters
- narray_like
Degree of the polynomial. If not an integer, the value is determined via the relation to
eval_legendre
.- xarray_like
Points at which to evaluate the shifted Legendre polynomial
- outndarray, optional
Optional output array for the function values
- Returns
- Pscalar or ndarray
Values of the shifted Legendre polynomial
See also
roots_sh_legendre
roots and quadrature weights of shifted Legendre polynomials
sh_legendre
shifted Legendre polynomial object
eval_legendre
evaluate Legendre polynomials
numpy.polynomial.legendre.Legendre
Legendre series
References
- AS
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.