scipy.special.eval_hermite#
- scipy.special.eval_hermite(n, x, out=None) = <ufunc 'eval_hermite'>#
Evaluate physicist’s Hermite polynomial at a point.
Defined by
\[H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2};\]\(H_n\) is a polynomial of degree \(n\). See 22.11.7 in [AS] for details.
- Parameters
- narray_like
Degree of the polynomial
- xarray_like
Points at which to evaluate the Hermite polynomial
- outndarray, optional
Optional output array for the function values
- Returns
- Hscalar or ndarray
Values of the Hermite polynomial
See also
roots_hermite
roots and quadrature weights of physicist’s Hermite polynomials
hermite
physicist’s Hermite polynomial object
numpy.polynomial.hermite.Hermite
Physicist’s Hermite series
eval_hermitenorm
evaluate Probabilist’s Hermite polynomials
References
- AS
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.