scipy.special.chebyc#
- scipy.special.chebyc(n, monic=False)[source]#
Chebyshev polynomial of the first kind on \([-2, 2]\).
Defined as \(C_n(x) = 2T_n(x/2)\), where \(T_n\) is the nth Chebychev polynomial of the first kind.
- Parameters
- nint
Degree of the polynomial.
- monicbool, optional
If True, scale the leading coefficient to be 1. Default is False.
- Returns
- Corthopoly1d
Chebyshev polynomial of the first kind on \([-2, 2]\).
See also
chebyt
Chebyshev polynomial of the first kind.
Notes
The polynomials \(C_n(x)\) are orthogonal over \([-2, 2]\) with weight function \(1/\sqrt{1 - (x/2)^2}\).
References
- 1
Abramowitz and Stegun, “Handbook of Mathematical Functions” Section 22. National Bureau of Standards, 1972.