scipy.special.btdtri#
- scipy.special.btdtri(a, b, p, out=None) = <ufunc 'btdtri'>#
The p-th quantile of the beta distribution.
This function is the inverse of the beta cumulative distribution function,
btdtr
, returning the value of x for which btdtr(a, b, x) = p, or\[p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt\]- Parameters
- aarray_like
Shape parameter (a > 0).
- barray_like
Shape parameter (b > 0).
- parray_like
Cumulative probability, in [0, 1].
- outndarray, optional
Optional output array for the function values
- Returns
- xscalar or ndarray
The quantile corresponding to p.
See also
Notes
The value of x is found by interval halving or Newton iterations.
Wrapper for the Cephes [1] routine incbi, which solves the equivalent problem of finding the inverse of the incomplete beta integral.
References
- 1
Cephes Mathematical Functions Library, http://www.netlib.org/cephes/