scipy.signal.argrelmin#
- scipy.signal.argrelmin(data, axis=0, order=1, mode='clip')[source]#
Calculate the relative minima of data.
- Parameters
- datandarray
Array in which to find the relative minima.
- axisint, optional
Axis over which to select from data. Default is 0.
- orderint, optional
How many points on each side to use for the comparison to consider
comparator(n, n+x)
to be True.- modestr, optional
How the edges of the vector are treated. Available options are ‘wrap’ (wrap around) or ‘clip’ (treat overflow as the same as the last (or first) element). Default ‘clip’. See numpy.take.
- Returns
- extrematuple of ndarrays
Indices of the minima in arrays of integers.
extrema[k]
is the array of indices of axis k of data. Note that the return value is a tuple even when data is 1-D.
See also
Notes
This function uses
argrelextrema
with np.less as comparator. Therefore, it requires a strict inequality on both sides of a value to consider it a minimum. This means flat minima (more than one sample wide) are not detected. In case of 1-D datafind_peaks
can be used to detect all local minima, including flat ones, by calling it with negated data.New in version 0.11.0.
Examples
>>> from scipy.signal import argrelmin >>> x = np.array([2, 1, 2, 3, 2, 0, 1, 0]) >>> argrelmin(x) (array([1, 5]),) >>> y = np.array([[1, 2, 1, 2], ... [2, 2, 0, 0], ... [5, 3, 4, 4]]) ... >>> argrelmin(y, axis=1) (array([0, 2]), array([2, 1]))