scipy.integrate.tplquad#
- scipy.integrate.tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49e-08, epsrel=1.49e-08)[source]#
Compute a triple (definite) integral.
Return the triple integral of
func(z, y, x)
fromx = a..b
,y = gfun(x)..hfun(x)
, andz = qfun(x,y)..rfun(x,y)
.- Parameters
- funcfunction
A Python function or method of at least three variables in the order (z, y, x).
- a, bfloat
The limits of integration in x: a < b
- gfunfunction or float
The lower boundary curve in y which is a function taking a single floating point argument (x) and returning a floating point result or a float indicating a constant boundary curve.
- hfunfunction or float
The upper boundary curve in y (same requirements as gfun).
- qfunfunction or float
The lower boundary surface in z. It must be a function that takes two floats in the order (x, y) and returns a float or a float indicating a constant boundary surface.
- rfunfunction or float
The upper boundary surface in z. (Same requirements as qfun.)
- argstuple, optional
Extra arguments to pass to func.
- epsabsfloat, optional
Absolute tolerance passed directly to the innermost 1-D quadrature integration. Default is 1.49e-8.
- epsrelfloat, optional
Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8.
- Returns
- yfloat
The resultant integral.
- abserrfloat
An estimate of the error.
See also
quad
Adaptive quadrature using QUADPACK
quadrature
Adaptive Gaussian quadrature
fixed_quad
Fixed-order Gaussian quadrature
dblquad
Double integrals
nquad
N-dimensional integrals
romb
Integrators for sampled data
simpson
Integrators for sampled data
ode
ODE integrators
odeint
ODE integrators
scipy.special
For coefficients and roots of orthogonal polynomials
Notes
Details of QUADPACK level routines
quad
calls routines from the FORTRAN library QUADPACK. This section provides details on the conditions for each routine to be called and a short description of each routine. For each level of integration,qagse
is used for finite limits orqagie
is used, if either limit (or both!) are infinite. The following provides a short description from [1] for each routine.- qagse
is an integrator based on globally adaptive interval subdivision in connection with extrapolation, which will eliminate the effects of integrand singularities of several types.
- qagie
handles integration over infinite intervals. The infinite range is mapped onto a finite interval and subsequently the same strategy as in
QAGS
is applied.
References
- 1
Piessens, Robert; de Doncker-Kapenga, Elise; Überhuber, Christoph W.; Kahaner, David (1983). QUADPACK: A subroutine package for automatic integration. Springer-Verlag. ISBN 978-3-540-12553-2.
Examples
Compute the triple integral of
x * y * z
, overx
ranging from 1 to 2,y
ranging from 2 to 3,z
ranging from 0 to 1. That is, \(\int^{x=2}_{x=1} \int^{y=3}_{y=2} \int^{z=1}_{z=0} x y z \,dz \,dy \,dx\).>>> from scipy import integrate >>> f = lambda z, y, x: x*y*z >>> integrate.tplquad(f, 1, 2, 2, 3, 0, 1) (1.8749999999999998, 3.3246447942574074e-14)
Calculate \(\int^{x=1}_{x=0} \int^{y=1-2x}_{y=0} \int^{z=1-x-2y}_{z=0} x y z \,dz \,dy \,dx\). Note: qfun/rfun takes arguments in the order (x, y), even though
f
takes arguments in the order (z, y, x).>>> f = lambda z, y, x: x*y*z >>> integrate.tplquad(f, 0, 1, 0, lambda x: 1-2*x, 0, lambda x, y: 1-x-2*y) (0.05416666666666668, 2.1774196738157757e-14)
Calculate \(\int^{x=1}_{x=0} \int^{y=1}_{y=0} \int^{z=1}_{z=0} a x y z \,dz \,dy \,dx\) for \(a=1, 3\).
>>> f = lambda z, y, x, a: a*x*y*z >>> integrate.tplquad(f, 0, 1, 0, 1, 0, 1, args=(1,)) (0.125, 5.527033708952211e-15) >>> integrate.tplquad(f, 0, 1, 0, 1, 0, 1, args=(3,)) (0.375, 1.6581101126856635e-14)