SciPy

This is documentation for an old release of SciPy (version 1.4.1). Search for this page in the documentation of the latest stable release (version 1.15.1).

Double Weibull Distribution

This is a signed form of the Weibull distribution. There is one shape parameter \(c>0\). Support is \(x\in\mathbb{R}\).

\begin{eqnarray*} f\left(x;c\right) & = & \frac{c}{2}\left|x\right|^{c-1}\exp\left(-\left|x\right|^{c}\right)\\ F\left(x;c\right) & = & \left\{ \begin{array}{ccc} \frac{1}{2}\exp\left(-\left|x\right|^{c}\right) & & x\leq0\\ 1-\frac{1}{2}\exp\left(-\left|x\right|^{c}\right) & & x>0 \end{array} \right.\\ G\left(q;c\right) & = & \left\{ \begin{array}{ccc} -\log^{1/c}\left(\frac{1}{2q}\right) & & q\leq\frac{1}{2}\\ \log^{1/c}\left(\frac{1}{2q-1}\right) & & q>\frac{1}{2} \end{array} \right.\end{eqnarray*}
\[\begin{split}\mu_{n}^{\prime}=\mu_{n}=\begin{cases} \Gamma\left(1+\frac{n}{c}\right) & n\text{ even}\\ 0 & n\text{ odd} \end{cases}\end{split}\]
\begin{eqnarray*} m_{n}=\mu & = & 0\\ \mu_{2} & = & \Gamma\left(\frac{c+2}{c}\right)\\ \gamma_{1} & = & 0\\ \gamma_{2} & = & \frac{\Gamma\left(1+\frac{4}{c}\right)}{\Gamma^{2}\left(1+\frac{2}{c}\right)}\\ m_{d} & = & \text{NA bimodal}\end{eqnarray*}

Implementation: scipy.stats.dweibull

Previous topic

Double Gamma Distribution

Next topic

Erlang Distribution