SciPy

This is documentation for an old release of SciPy (version 1.4.1). Read this page in the documentation of the latest stable release (version 1.15.1).

Double Gamma Distribution

The double gamma is the signed version of the Gamma distribution. For \(\alpha>0:\)

\begin{eqnarray*} f\left(x;\alpha\right) & = & \frac{1}{2\Gamma\left(\alpha\right)}\left|x\right|^{\alpha-1}e^{-\left|x\right|}\\ F\left(x;\alpha\right) & = & \left\{ \begin{array}{ccc} \frac{1}{2}-\frac{\gamma\left(\alpha,\left|x\right|\right)}{2\Gamma\left(\alpha\right)} & & x\leq0\\ \frac{1}{2}+\frac{\gamma\left(\alpha,\left|x\right|\right)}{2\Gamma\left(\alpha\right)} & & x>0 \end{array} \right.\\ G\left(q;\alpha\right) & = & \left\{ \begin{array}{ccc} -\gamma^{-1}\left(\alpha,\left|2q-1\right|\Gamma\left(\alpha\right)\right) & & q\leq\frac{1}{2}\\ \gamma^{-1}\left(\alpha,\left|2q-1\right|\Gamma\left(\alpha\right)\right) & & q>\frac{1}{2} \end{array} \right.\end{eqnarray*}
\[M\left(t\right)=\frac{1}{2\left(1-t\right)^{a}}+\frac{1}{2\left(1+t\right)^{a}}\]
\begin{eqnarray*} \mu=m_{n} & = & 0\\ \mu_{2} & = & \alpha\left(\alpha+1\right)\\ \gamma_{1} & = & 0\\ \gamma_{2} & = & \frac{\left(\alpha+2\right)\left(\alpha+3\right)}{\alpha\left(\alpha+1\right)}-3\\ m_{d} & = & \mathrm{NA}\end{eqnarray*}

Implementation: scipy.stats.dgamma

Previous topic

Cosine Distribution

Next topic

Double Weibull Distribution