scipy.stats.mstats.siegelslopes¶
-
scipy.stats.mstats.
siegelslopes
(y, x=None, method='hierarchical')[source]¶ Computes the Siegel estimator for a set of points (x, y).
siegelslopes
implements a method for robust linear regression using repeated medians to fit a line to the points (x, y). The method is robust to outliers with an asymptotic breakdown point of 50%.Parameters: - y : array_like
Dependent variable.
- x : array_like or None, optional
Independent variable. If None, use
arange(len(y))
instead.- method : {‘hierarchical’, ‘separate’}
If ‘hierarchical’, estimate the intercept using the estimated slope
medslope
(default option). If ‘separate’, estimate the intercept independent of the estimated slope. See Notes for details.
Returns: - medslope : float
Estimate of the slope of the regression line.
- medintercept : float
Estimate of the intercept of the regression line.
See also
theilslopes
- a similar technique without repeated medians
Notes
For more details on
siegelslopes
, seescipy.stats.siegelslopes
.