scipy.stats.kurtosis¶
-
scipy.stats.
kurtosis
(a, axis=0, fisher=True, bias=True, nan_policy='propagate')[source]¶ Compute the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators
Use
kurtosistest
to see if result is close enough to normal.Parameters: - a : array
data for which the kurtosis is calculated
- axis : int or None, optional
Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array a.
- fisher : bool, optional
If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s definition is used (normal ==> 3.0).
- bias : bool, optional
If False, then the calculations are corrected for statistical bias.
- nan_policy : {‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’.
Returns: - kurtosis : array
The kurtosis of values along an axis. If all values are equal, return -3 for Fisher’s definition and 0 for Pearson’s definition.
References
[1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Examples
>>> from scipy.stats import kurtosis >>> kurtosis([1, 2, 3, 4, 5]) -1.3