scipy.integrate.tplquad¶
-
scipy.integrate.tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49e-08, epsrel=1.49e-08)[source]¶ Compute a triple (definite) integral.
Return the triple integral of
func(z, y, x)fromx = a..b,y = gfun(x)..hfun(x), andz = qfun(x,y)..rfun(x,y).Parameters: - func : function
A Python function or method of at least three variables in the order (z, y, x).
- a, b : float
The limits of integration in x: a < b
- gfun : function or float
The lower boundary curve in y which is a function taking a single floating point argument (x) and returning a floating point result or a float indicating a constant boundary curve.
- hfun : function or float
The upper boundary curve in y (same requirements as gfun).
- qfun : function or float
The lower boundary surface in z. It must be a function that takes two floats in the order (x, y) and returns a float or a float indicating a constant boundary surface.
- rfun : function or float
The upper boundary surface in z. (Same requirements as qfun.)
- args : tuple, optional
Extra arguments to pass to func.
- epsabs : float, optional
Absolute tolerance passed directly to the innermost 1-D quadrature integration. Default is 1.49e-8.
- epsrel : float, optional
Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8.
Returns: - y : float
The resultant integral.
- abserr : float
An estimate of the error.
See also
quad- Adaptive quadrature using QUADPACK
quadrature- Adaptive Gaussian quadrature
fixed_quad- Fixed-order Gaussian quadrature
dblquad- Double integrals
nquad- N-dimensional integrals
romb- Integrators for sampled data
simps- Integrators for sampled data
ode- ODE integrators
odeint- ODE integrators
scipy.special- For coefficients and roots of orthogonal polynomials
Examples
Compute the triple integral of
x * y * z, overxranging from 1 to 2,yranging from 2 to 3,zranging from 0 to 1.>>> from scipy import integrate >>> f = lambda z, y, x: x*y*z >>> integrate.tplquad(f, 1, 2, lambda x: 2, lambda x: 3, ... lambda x, y: 0, lambda x, y: 1) (1.8750000000000002, 3.324644794257407e-14)
