scipy.cluster.hierarchy.is_monotonic¶
-
scipy.cluster.hierarchy.
is_monotonic
(Z)[source]¶ Return True if the linkage passed is monotonic.
The linkage is monotonic if for every cluster \(s\) and \(t\) joined, the distance between them is no less than the distance between any previously joined clusters.
Parameters: - Z : ndarray
The linkage matrix to check for monotonicity.
Returns: - b : bool
A boolean indicating whether the linkage is monotonic.
See also
linkage
- for a description of what a linkage matrix is.
Examples
>>> from scipy.cluster.hierarchy import median, ward, is_monotonic >>> from scipy.spatial.distance import pdist
By definition, some hierarchical clustering algorithms - such as
scipy.cluster.hierarchy.ward
- produce monotonic assignments of samples to clusters; however, this is not always true for other hierarchical methods - e.g.scipy.cluster.hierarchy.median
.Given a linkage matrix
Z
(as the result of a hierarchical clustering method) we can test programmatically whether if is has the monotonicity property or not, usingscipy.cluster.hierarchy.is_monotonic
:>>> X = [[0, 0], [0, 1], [1, 0], ... [0, 4], [0, 3], [1, 4], ... [4, 0], [3, 0], [4, 1], ... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X)) >>> Z array([[ 0. , 1. , 1. , 2. ], [ 3. , 4. , 1. , 2. ], [ 6. , 7. , 1. , 2. ], [ 9. , 10. , 1. , 2. ], [ 2. , 12. , 1.29099445, 3. ], [ 5. , 13. , 1.29099445, 3. ], [ 8. , 14. , 1.29099445, 3. ], [11. , 15. , 1.29099445, 3. ], [16. , 17. , 5.77350269, 6. ], [18. , 19. , 5.77350269, 6. ], [20. , 21. , 8.16496581, 12. ]]) >>> is_monotonic(Z) True
>>> Z = median(pdist(X)) >>> Z array([[ 0. , 1. , 1. , 2. ], [ 3. , 4. , 1. , 2. ], [ 9. , 10. , 1. , 2. ], [ 6. , 7. , 1. , 2. ], [ 2. , 12. , 1.11803399, 3. ], [ 5. , 13. , 1.11803399, 3. ], [ 8. , 15. , 1.11803399, 3. ], [11. , 14. , 1.11803399, 3. ], [18. , 19. , 3. , 6. ], [16. , 17. , 3.5 , 6. ], [20. , 21. , 3.25 , 12. ]]) >>> is_monotonic(Z) False
Note that this method is equivalent to just verifying that the distances in the third column of the linkage matrix appear in a monotonically increasing order.