scipy.cluster.hierarchy.median¶
-
scipy.cluster.hierarchy.
median
(y)[source]¶ Perform median/WPGMC linkage.
See
linkage
for more information on the return structure and algorithm.The following are common calling conventions:
Z = median(y)
Performs median/WPGMC linkage on the condensed distance matrix
y
. Seelinkage
for more information on the return structure and algorithm.Z = median(X)
Performs median/WPGMC linkage on the observation matrix
X
using Euclidean distance as the distance metric. Seelinkage
for more information on the return structure and algorithm.
Parameters: - y : ndarray
A condensed distance matrix. A condensed distance matrix is a flat array containing the upper triangular of the distance matrix. This is the form that
pdist
returns. Alternatively, a collection of m observation vectors in n dimensions may be passed as a m by n array.
Returns: - Z : ndarray
The hierarchical clustering encoded as a linkage matrix.
See also
linkage
- for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist
- pairwise distance metrics
Examples
>>> from scipy.cluster.hierarchy import median, fcluster >>> from scipy.spatial.distance import pdist
First we need a toy dataset to play with:
x x x x x x x x x x x x
>>> X = [[0, 0], [0, 1], [1, 0], ... [0, 4], [0, 3], [1, 4], ... [4, 0], [3, 0], [4, 1], ... [4, 4], [3, 4], [4, 3]]
Then we get a condensed distance matrix from this dataset:
>>> y = pdist(X)
Finally, we can perform the clustering:
>>> Z = median(y) >>> Z array([[ 0. , 1. , 1. , 2. ], [ 3. , 4. , 1. , 2. ], [ 9. , 10. , 1. , 2. ], [ 6. , 7. , 1. , 2. ], [ 2. , 12. , 1.11803399, 3. ], [ 5. , 13. , 1.11803399, 3. ], [ 8. , 15. , 1.11803399, 3. ], [11. , 14. , 1.11803399, 3. ], [18. , 19. , 3. , 6. ], [16. , 17. , 3.5 , 6. ], [20. , 21. , 3.25 , 12. ]])
The linkage matrix
Z
represents a dendrogram - seescipy.cluster.hierarchy.linkage
for a detailed explanation of its contents.We can use
scipy.cluster.hierarchy.fcluster
to see to which cluster each initial point would belong given a distance threshold:>>> fcluster(Z, 0.9, criterion='distance') array([ 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32) >>> fcluster(Z, 1.1, criterion='distance') array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32) >>> fcluster(Z, 2, criterion='distance') array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32) >>> fcluster(Z, 4, criterion='distance') array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Also
scipy.cluster.hierarchy.dendrogram
can be used to generate a plot of the dendrogram.