scipy.linalg.qr#
- scipy.linalg.qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False, check_finite=True)[source]#
Compute QR decomposition of a matrix.
Calculate the decomposition
A = Q R
where Q is unitary/orthogonal and R upper triangular.- Parameters:
- a(M, N) array_like
Matrix to be decomposed
- overwrite_abool, optional
Whether data in a is overwritten (may improve performance if overwrite_a is set to True by reusing the existing input data structure rather than creating a new one.)
- lworkint, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed.
- mode{‘full’, ‘r’, ‘economic’, ‘raw’}, optional
Determines what information is to be returned: either both Q and R (‘full’, default), only R (‘r’) or both Q and R but computed in economy-size (‘economic’, see Notes). The final option ‘raw’ (added in SciPy 0.11) makes the function return two matrices (Q, TAU) in the internal format used by LAPACK.
- pivotingbool, optional
Whether or not factorization should include pivoting for rank-revealing qr decomposition. If pivoting, compute the decomposition
A[:, P] = Q @ R
as above, but where P is chosen such that the diagonal of R is non-increasing.- check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns:
- Qfloat or complex ndarray
Of shape (M, M), or (M, K) for
mode='economic'
. Not returned ifmode='r'
. Replaced by tuple(Q, TAU)
ifmode='raw'
.- Rfloat or complex ndarray
Of shape (M, N), or (K, N) for
mode in ['economic', 'raw']
.K = min(M, N)
.- Pint ndarray
Of shape (N,) for
pivoting=True
. Not returned ifpivoting=False
.
- Raises:
- LinAlgError
Raised if decomposition fails
Notes
This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, zungqr, dgeqp3, and zgeqp3.
If
mode=economic
, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), withK=min(M,N)
.Examples
>>> import numpy as np >>> from scipy import linalg >>> rng = np.random.default_rng() >>> a = rng.standard_normal((9, 6))
>>> q, r = linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) True >>> q.shape, r.shape ((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r') >>> np.allclose(r, r2) True
>>> q3, r3 = linalg.qr(a, mode='economic') >>> q3.shape, r3.shape ((9, 6), (6, 6))
>>> q4, r4, p4 = linalg.qr(a, pivoting=True) >>> d = np.abs(np.diag(r4)) >>> np.all(d[1:] <= d[:-1]) True >>> np.allclose(a[:, p4], np.dot(q4, r4)) True >>> q4.shape, r4.shape, p4.shape ((9, 9), (9, 6), (6,))
>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True) >>> q5.shape, r5.shape, p5.shape ((9, 6), (6, 6), (6,))