scipy.stats.jf_skew_t#
- scipy.stats.jf_skew_t = <scipy.stats._continuous_distns.jf_skew_t_gen object>[source]#
Jones and Faddy skew-t distribution.
As an instance of the
rv_continuous
class,jf_skew_t
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability density function for
jf_skew_t
is:\[f(x; a, b) = C_{a,b}^{-1} \left(1+\frac{x}{\left(a+b+x^2\right)^{1/2}}\right)^{a+1/2} \left(1-\frac{x}{\left(a+b+x^2\right)^{1/2}}\right)^{b+1/2}\]for real numbers \(a>0\) and \(b>0\), where \(C_{a,b} = 2^{a+b-1}B(a,b)(a+b)^{1/2}\), and \(B\) denotes the beta function (
scipy.special.beta
).When \(a<b\), the distribution is negatively skewed, and when \(a>b\), the distribution is positively skewed. If \(a=b\), then we recover the
t
distribution with \(2a\) degrees of freedom.jf_skew_t
takes \(a\) and \(b\) as shape parameters.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,jf_skew_t.pdf(x, a, b, loc, scale)
is identically equivalent tojf_skew_t.pdf(y, a, b) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.References
[1]M.C. Jones and M.J. Faddy. “A skew extension of the t distribution, with applications” Journal of the Royal Statistical Society. Series B (Statistical Methodology) 65, no. 1 (2003): 159-174. DOI:10.1111/1467-9868.00378
Examples
>>> import numpy as np >>> from scipy.stats import jf_skew_t >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> a, b = 8, 4 >>> mean, var, skew, kurt = jf_skew_t.stats(a, b, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(jf_skew_t.ppf(0.01, a, b), ... jf_skew_t.ppf(0.99, a, b), 100) >>> ax.plot(x, jf_skew_t.pdf(x, a, b), ... 'r-', lw=5, alpha=0.6, label='jf_skew_t pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = jf_skew_t(a, b) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = jf_skew_t.ppf([0.001, 0.5, 0.999], a, b) >>> np.allclose([0.001, 0.5, 0.999], jf_skew_t.cdf(vals, a, b)) True
Generate random numbers:
>>> r = jf_skew_t.rvs(a, b, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) >>> ax.set_xlim([x[0], x[-1]]) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(a, b, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, a, b, loc=0, scale=1)
Probability density function.
logpdf(x, a, b, loc=0, scale=1)
Log of the probability density function.
cdf(x, a, b, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, a, b, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, a, b, loc=0, scale=1)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(x, a, b, loc=0, scale=1)
Log of the survival function.
ppf(q, a, b, loc=0, scale=1)
Percent point function (inverse of
cdf
— percentiles).isf(q, a, b, loc=0, scale=1)
Inverse survival function (inverse of
sf
).moment(order, a, b, loc=0, scale=1)
Non-central moment of the specified order.
stats(a, b, loc=0, scale=1, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(a, b, loc=0, scale=1)
Median of the distribution.
mean(a, b, loc=0, scale=1)
Mean of the distribution.
var(a, b, loc=0, scale=1)
Variance of the distribution.
std(a, b, loc=0, scale=1)
Standard deviation of the distribution.
interval(confidence, a, b, loc=0, scale=1)
Confidence interval with equal areas around the median.