scipy.special.jve#
- scipy.special.jve(v, z, out=None) = <ufunc 'jve'>#
Exponentially scaled Bessel function of the first kind of order v.
Defined as:
jve(v, z) = jv(v, z) * exp(-abs(z.imag))
- Parameters:
- varray_like
Order (float).
- zarray_like
Argument (float or complex).
- outndarray, optional
Optional output array for the function values
- Returns:
- Jscalar or ndarray
Value of the exponentially scaled Bessel function.
See also
jv
Unscaled Bessel function of the first kind
Notes
For positive v values, the computation is carried out using the AMOS [1] zbesj routine, which exploits the connection to the modified Bessel function \(I_v\),
\[ \begin{align}\begin{aligned}J_v(z) = \exp(v\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0)\\J_v(z) = \exp(-v\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0)\end{aligned}\end{align} \]For negative v values the formula,
\[J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v)\]is used, where \(Y_v(z)\) is the Bessel function of the second kind, computed using the AMOS routine zbesy. Note that the second term is exactly zero for integer v; to improve accuracy the second term is explicitly omitted for v values such that v = floor(v).
Exponentially scaled Bessel functions are useful for large arguments z: for these, the unscaled Bessel functions can easily under-or overflow.
References
[1]Donald E. Amos, “AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order”, http://netlib.org/amos/
Examples
Compare the output of
jv
andjve
for large complex arguments for z by computing their values for orderv=1
atz=1000j
. We see thatjv
overflows butjve
returns a finite number:>>> import numpy as np >>> from scipy.special import jv, jve >>> v = 1 >>> z = 1000j >>> jv(v, z), jve(v, z) ((inf+infj), (7.721967686709077e-19+0.012610930256928629j))
For real arguments for z,
jve
returns the same asjv
.>>> v, z = 1, 1000 >>> jv(v, z), jve(v, z) (0.004728311907089523, 0.004728311907089523)
The function can be evaluated for several orders at the same time by providing a list or NumPy array for v:
>>> jve([1, 3, 5], 1j) array([1.27304208e-17+2.07910415e-01j, -4.99352086e-19-8.15530777e-03j, 6.11480940e-21+9.98657141e-05j])
In the same way, the function can be evaluated at several points in one call by providing a list or NumPy array for z:
>>> jve(1, np.array([1j, 2j, 3j])) array([1.27308412e-17+0.20791042j, 1.31814423e-17+0.21526929j, 1.20521602e-17+0.19682671j])
It is also possible to evaluate several orders at several points at the same time by providing arrays for v and z with compatible shapes for broadcasting. Compute
jve
for two different orders v and three points z resulting in a 2x3 array.>>> v = np.array([[1], [3]]) >>> z = np.array([1j, 2j, 3j]) >>> v.shape, z.shape ((2, 1), (3,))
>>> jve(v, z) array([[1.27304208e-17+0.20791042j, 1.31810070e-17+0.21526929j, 1.20517622e-17+0.19682671j], [-4.99352086e-19-0.00815531j, -1.76289571e-18-0.02879122j, -2.92578784e-18-0.04778332j]])