scipy.special.expn#
- scipy.special.expn(n, x, out=None) = <ufunc 'expn'>#
Generalized exponential integral En.
For integer \(n \geq 0\) and real \(x \geq 0\) the generalized exponential integral is defined as [dlmf]
\[E_n(x) = x^{n - 1} \int_x^\infty \frac{e^{-t}}{t^n} dt.\]- Parameters:
- narray_like
Non-negative integers
- xarray_like
Real argument
- outndarray, optional
Optional output array for the function results
- Returns:
- scalar or ndarray
Values of the generalized exponential integral
References
[dlmf]Digital Library of Mathematical Functions, 8.19.2 https://dlmf.nist.gov/8.19#E2
Examples
>>> import numpy as np >>> import scipy.special as sc
Its domain is nonnegative n and x.
>>> sc.expn(-1, 1.0), sc.expn(1, -1.0) (nan, nan)
It has a pole at
x = 0
forn = 1, 2
; for largern
it is equal to1 / (n - 1)
.>>> sc.expn([0, 1, 2, 3, 4], 0) array([ inf, inf, 1. , 0.5 , 0.33333333])
For n equal to 0 it reduces to
exp(-x) / x
.>>> x = np.array([1, 2, 3, 4]) >>> sc.expn(0, x) array([0.36787944, 0.06766764, 0.01659569, 0.00457891]) >>> np.exp(-x) / x array([0.36787944, 0.06766764, 0.01659569, 0.00457891])
For n equal to 1 it reduces to
exp1
.>>> sc.expn(1, x) array([0.21938393, 0.04890051, 0.01304838, 0.00377935]) >>> sc.exp1(x) array([0.21938393, 0.04890051, 0.01304838, 0.00377935])