scipy.linalg.inv#
- scipy.linalg.inv(a, overwrite_a=False, check_finite=True)[source]#
Compute the inverse of a matrix.
- Parameters:
- aarray_like
Square matrix to be inverted.
- overwrite_abool, optional
Discard data in a (may improve performance). Default is False.
- check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns:
- ainvndarray
Inverse of the matrix a.
- Raises:
- LinAlgError
If a is singular.
- ValueError
If a is not square, or not 2D.
Examples
>>> import numpy as np >>> from scipy import linalg >>> a = np.array([[1., 2.], [3., 4.]]) >>> linalg.inv(a) array([[-2. , 1. ], [ 1.5, -0.5]]) >>> np.dot(a, linalg.inv(a)) array([[ 1., 0.], [ 0., 1.]])