scipy.sparse.dok_matrix#

class scipy.sparse.dok_matrix(arg1, shape=None, dtype=None, copy=False)[source]#

Dictionary Of Keys based sparse matrix.

This is an efficient structure for constructing sparse matrices incrementally.

This can be instantiated in several ways:
dok_array(D)

with a dense matrix, D

dok_array(S)

with a sparse matrix, S

dok_array((M,N), [dtype])

create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype=’d’

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.

Examples

>>> import numpy as np
>>> from scipy.sparse import dok_array
>>> S = dok_array((5, 5), dtype=np.float32)
>>> for i in range(5):
...     for j in range(5):
...         S[i, j] = i + j    # Update element
Attributes:
dtypedtype

Data type of the matrix

shape2-tuple

Get shape of a sparse array.

ndimint

Number of dimensions (this is always 2)

nnz

Number of stored values, including explicit zeros.

Methods

__len__()

Return len(self).

__mul__(other)

asformat(format[, copy])

Return this array in the passed format.

asfptype()

Upcast array to a floating point format (if necessary)

astype(dtype[, casting, copy])

Cast the array elements to a specified type.

clear()

conj([copy])

Element-wise complex conjugation.

conjtransp()

Return the conjugate transpose.

conjugate([copy])

Element-wise complex conjugation.

copy()

Returns a copy of this array.

count_nonzero()

Number of non-zero entries, equivalent to

diagonal([k])

Returns the kth diagonal of the array.

dot(other)

Ordinary dot product

fromkeys(iterable[, value])

Create a new dictionary with keys from iterable and values set to value.

get(key[, default])

This overrides the dict.get method, providing type checking but otherwise equivalent functionality.

getH()

Return the Hermitian transpose of this array.

get_shape()

Get shape of a sparse array.

getcol(j)

Returns a copy of column j of the array, as an (m x 1) sparse array (column vector).

getformat()

Matrix storage format

getmaxprint()

Maximum number of elements to display when printed.

getnnz([axis])

Number of stored values, including explicit zeros.

getrow(i)

Returns a copy of row i of the array, as a (1 x n) sparse array (row vector).

items()

keys()

maximum(other)

Element-wise maximum between this and another array.

mean([axis, dtype, out])

Compute the arithmetic mean along the specified axis.

minimum(other)

Element-wise minimum between this and another array.

multiply(other)

Point-wise multiplication by another array

nonzero()

nonzero indices

pop(key[, default])

If key is not found, default is returned if given, otherwise KeyError is raised

popitem(/)

Remove and return a (key, value) pair as a 2-tuple.

power(n[, dtype])

Element-wise power.

reshape(self, shape[, order, copy])

Gives a new shape to a sparse array without changing its data.

resize(*shape)

Resize the array in-place to dimensions given by shape

set_shape(shape)

Set the shape of the matrix in-place

setdefault(key[, default])

Insert key with a value of default if key is not in the dictionary.

setdiag(values[, k])

Set diagonal or off-diagonal elements of the array.

sum([axis, dtype, out])

Sum the array elements over a given axis.

toarray([order, out])

Return a dense ndarray representation of this sparse array.

tobsr([blocksize, copy])

Convert this array to Block Sparse Row format.

tocoo([copy])

Convert this array to COOrdinate format.

tocsc([copy])

Convert this array to Compressed Sparse Column format.

tocsr([copy])

Convert this array to Compressed Sparse Row format.

todense([order, out])

Return a dense matrix representation of this sparse array.

todia([copy])

Convert this array to sparse DIAgonal format.

todok([copy])

Convert this array to Dictionary Of Keys format.

tolil([copy])

Convert this array to List of Lists format.

trace([offset])

Returns the sum along diagonals of the sparse array.

transpose([axes, copy])

Reverses the dimensions of the sparse array.

update([E, ]**F)

If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()

__getitem__