scipy.optimize.brent#
- scipy.optimize.brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)[source]#
Given a function of one variable and a possible bracket, return a local minimizer of the function isolated to a fractional precision of tol.
- Parameters:
- funccallable f(x,*args)
Objective function.
- argstuple, optional
Additional arguments (if present).
- bracktuple, optional
Either a triple
(xa, xb, xc)
satisfyingxa < xb < xc
andfunc(xb) < func(xa) and func(xb) < func(xc)
, or a pair(xa, xb)
to be used as initial points for a downhill bracket search (seescipy.optimize.bracket
). The minimizerx
will not necessarily satisfyxa <= x <= xb
.- tolfloat, optional
Relative error in solution xopt acceptable for convergence.
- full_outputbool, optional
If True, return all output args (xmin, fval, iter, funcalls).
- maxiterint, optional
Maximum number of iterations in solution.
- Returns:
- xminndarray
Optimum point.
- fvalfloat
(Optional output) Optimum function value.
- iterint
(Optional output) Number of iterations.
- funcallsint
(Optional output) Number of objective function evaluations made.
See also
minimize_scalar
Interface to minimization algorithms for scalar univariate functions. See the ‘Brent’ method in particular.
Notes
Uses inverse parabolic interpolation when possible to speed up convergence of golden section method.
Does not ensure that the minimum lies in the range specified by brack. See
scipy.optimize.fminbound
.Examples
We illustrate the behaviour of the function when brack is of size 2 and 3 respectively. In the case where brack is of the form
(xa, xb)
, we can see for the given values, the output does not necessarily lie in the range(xa, xb)
.>>> def f(x): ... return (x-1)**2
>>> from scipy import optimize
>>> minimizer = optimize.brent(f, brack=(1, 2)) >>> minimizer 1 >>> res = optimize.brent(f, brack=(-1, 0.5, 2), full_output=True) >>> xmin, fval, iter, funcalls = res >>> f(xmin), fval (0.0, 0.0)