scipy.signal.TransferFunction#
- class scipy.signal.TransferFunction(*system, **kwargs)[source]#
Linear Time Invariant system class in transfer function form.
Represents the system as the continuous-time transfer function \(H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j\) or the discrete-time transfer function \(H(z)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j\), where \(b\) are elements of the numerator
num, \(a\) are elements of the denominatorden, andN == len(b) - 1,M == len(a) - 1.TransferFunctionsystems inherit additional functionality from thelti, respectively thedlticlasses, depending on which system representation is used.- Parameters:
- *system: arguments
The
TransferFunctionclass can be instantiated with 1 or 2 arguments. The following gives the number of input arguments and their interpretation:1:
ltiordltisystem: (StateSpace,TransferFunctionorZerosPolesGain)2: array_like: (numerator, denominator)
- dt: float, optional
Sampling time [s] of the discrete-time systems. Defaults to None (continuous-time). Must be specified as a keyword argument, for example,
dt=0.1.
See also
Notes
Changing the value of properties that are not part of the
TransferFunctionsystem representation (such as the A, B, C, D state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, callsys = sys.to_ss()before accessing/changing the A, B, C, D system matrices.If (numerator, denominator) is passed in for
*system, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g.s^2 + 3s + 5orz^2 + 3z + 5would be represented as[1, 3, 5])Examples
Construct the transfer function \(H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}\):
>>> from scipy import signal
>>> num = [1, 3, 3] >>> den = [1, 2, 1]
>>> signal.TransferFunction(num, den) TransferFunctionContinuous( array([1., 3., 3.]), array([1., 2., 1.]), dt: None )
Construct the transfer function \(H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}\) with a sampling time of 0.1 seconds:
>>> signal.TransferFunction(num, den, dt=0.1) TransferFunctionDiscrete( array([1., 3., 3.]), array([1., 2., 1.]), dt: 0.1 )
- Attributes:
denDenominator of the
TransferFunctionsystem.dtReturn the sampling time of the system, None for
ltisystems.numNumerator of the
TransferFunctionsystem.polesPoles of the system.
zerosZeros of the system.
Methods
to_ss()Convert system representation to
StateSpace.to_tf()Return a copy of the current
TransferFunctionsystem.to_zpk()Convert system representation to
ZerosPolesGain.