scipy.fft.ifht#
- scipy.fft.ifht(A, dln, mu, offset=0.0, bias=0.0)[source]#
Compute the inverse fast Hankel transform.
Computes the discrete inverse Hankel transform of a logarithmically spaced periodic sequence. This is the inverse operation to
fht
.- Parameters:
- Aarray_like (…, n)
Real periodic input array, uniformly logarithmically spaced. For multidimensional input, the transform is performed over the last axis.
- dlnfloat
Uniform logarithmic spacing of the input array.
- mufloat
Order of the Hankel transform, any positive or negative real number.
- offsetfloat, optional
Offset of the uniform logarithmic spacing of the output array.
- biasfloat, optional
Exponent of power law bias, any positive or negative real number.
- Returns:
- aarray_like (…, n)
The transformed output array, which is real, periodic, uniformly logarithmically spaced, and of the same shape as the input array.
Notes
This function computes a discrete version of the Hankel transform
\[a(r) = \int_{0}^{\infty} \! A(k) \, J_\mu(kr) \, r \, dk \;,\]where \(J_\mu\) is the Bessel function of order \(\mu\). The index \(\mu\) may be any real number, positive or negative.
See
fht
for further details.