scipy.fft.dstn#
- scipy.fft.dstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False, workers=None, orthogonalize=None)[source]#
Return multidimensional Discrete Sine Transform along the specified axes.
- Parameters:
- xarray_like
The input array.
- type{1, 2, 3, 4}, optional
Type of the DST (see Notes). Default type is 2.
- sint or array_like of ints or None, optional
The shape of the result. If both s and axes (see below) are None, s is
x.shape
; if s is None but axes is not None, then s isnumpy.take(x.shape, axes, axis=0)
. Ifs[i] > x.shape[i]
, the ith dimension is padded with zeros. Ifs[i] < x.shape[i]
, the ith dimension is truncated to lengths[i]
. If any element of shape is -1, the size of the corresponding dimension of x is used.- axesint or array_like of ints or None, optional
Axes over which the DST is computed. If not given, the last
len(s)
axes are used, or all axes if s is also not specified.- norm{“backward”, “ortho”, “forward”}, optional
Normalization mode (see Notes). Default is “backward”.
- overwrite_xbool, optional
If True, the contents of x can be destroyed; the default is False.
- workersint, optional
Maximum number of workers to use for parallel computation. If negative, the value wraps around from
os.cpu_count()
. Seefft
for more details.- orthogonalizebool, optional
Whether to use the orthogonalized DST variant (see Notes). Defaults to
True
whennorm="ortho"
andFalse
otherwise.New in version 1.8.0.
- Returns:
- yndarray of real
The transformed input array.
See also
idstn
Inverse multidimensional DST
Notes
For full details of the DST types and normalization modes, as well as references, see
dst
.Examples
>>> import numpy as np >>> from scipy.fft import dstn, idstn >>> rng = np.random.default_rng() >>> y = rng.standard_normal((16, 16)) >>> np.allclose(y, idstn(dstn(y))) True