scipy.linalg.eig_banded#
- scipy.linalg.eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False, select='a', select_range=None, max_ev=0, check_finite=True)[source]#
Solve real symmetric or complex Hermitian band matrix eigenvalue problem.
Find eigenvalues w and optionally right eigenvectors v of a:
a v[:,i] = w[i] v[:,i] v.H v = identity
The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form:
a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[ i - j, j] == a[i,j] (if lower form; i >= j)
where u is the number of bands above the diagonal.
Example of a_band (shape of a is (6,6), u=2):
upper form: * * a02 a13 a24 a35 * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 lower form: a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * *
Cells marked with * are not used.
- Parameters:
- a_band(u+1, M) array_like
The bands of the M by M matrix a.
- lowerbool, optional
Is the matrix in the lower form. (Default is upper form)
- eigvals_onlybool, optional
Compute only the eigenvalues and no eigenvectors. (Default: calculate also eigenvectors)
- overwrite_a_bandbool, optional
Discard data in a_band (may enhance performance)
- select{‘a’, ‘v’, ‘i’}, optional
Which eigenvalues to calculate
select
calculated
‘a’
All eigenvalues
‘v’
Eigenvalues in the interval (min, max]
‘i’
Eigenvalues with indices min <= i <= max
- select_range(min, max), optional
Range of selected eigenvalues
- max_evint, optional
For select==’v’, maximum number of eigenvalues expected. For other values of select, has no meaning.
In doubt, leave this parameter untouched.
- check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns:
- w(M,) ndarray
The eigenvalues, in ascending order, each repeated according to its multiplicity.
- v(M, M) float or complex ndarray
The normalized eigenvector corresponding to the eigenvalue w[i] is the column v[:,i].
- Raises:
- LinAlgError
If eigenvalue computation does not converge.
See also
eigvals_banded
eigenvalues for symmetric/Hermitian band matrices
eig
eigenvalues and right eigenvectors of general arrays.
eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigh_tridiagonal
eigenvalues and right eigenvectors for symmetric/Hermitian tridiagonal matrices
Examples
>>> import numpy as np >>> from scipy.linalg import eig_banded >>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]]) >>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]]) >>> w, v = eig_banded(Ab, lower=True) >>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4))) True >>> w = eig_banded(Ab, lower=True, eigvals_only=True) >>> w array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])
Request only the eigenvalues between
[-3, 4]
>>> w, v = eig_banded(Ab, lower=True, select='v', select_range=[-3, 4]) >>> w array([-2.22987175, 3.95222349])