scipy.linalg.det#
- scipy.linalg.det(a, overwrite_a=False, check_finite=True)[source]#
Compute the determinant of a matrix
The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix.
The determinant for a 3x3 matrix, for example, is computed as follows:
a b c d e f = A g h i det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h
- Parameters:
- a(M, M) array_like
A square matrix.
- overwrite_abool, optional
Allow overwriting data in a (may enhance performance).
- check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns:
- detfloat or complex
Determinant of a.
Notes
The determinant is computed via LU factorization, LAPACK routine z/dgetrf.
Examples
>>> import numpy as np >>> from scipy import linalg >>> a = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> linalg.det(a) 0.0 >>> a = np.array([[0,2,3], [4,5,6], [7,8,9]]) >>> linalg.det(a) 3.0