scipy.sparse.linalg¶
Sparse linear algebra (scipy.sparse.linalg)¶
Abstract linear operators¶
LinearOperator(dtype, shape) | 
Common interface for performing matrix vector products | 
aslinearoperator(A) | 
Return A as a LinearOperator. | 
Matrix Operations¶
inv(A) | 
Compute the inverse of a sparse matrix | 
expm(A) | 
Compute the matrix exponential using Pade approximation. | 
expm_multiply(A, B[, start, stop, num, endpoint]) | 
Compute the action of the matrix exponential of A on B. | 
Matrix norms¶
norm(x[, ord, axis]) | 
Norm of a sparse matrix | 
onenormest(A[, t, itmax, compute_v, compute_w]) | 
Compute a lower bound of the 1-norm of a sparse matrix. | 
Solving linear problems¶
Direct methods for linear equation systems:
spsolve(A, b[, permc_spec, use_umfpack]) | 
Solve the sparse linear system Ax=b, where b may be a vector or a matrix. | 
spsolve_triangular(A, b[, lower, …]) | 
Solve the equation A x = b for x, assuming A is a triangular matrix. | 
factorized(A) | 
Return a function for solving a sparse linear system, with A pre-factorized. | 
MatrixRankWarning | 
|
use_solver(**kwargs) | 
Select default sparse direct solver to be used. | 
Iterative methods for linear equation systems:
bicg(A, b[, x0, tol, maxiter, M, callback, atol]) | 
Use BIConjugate Gradient iteration to solve Ax = b. | 
bicgstab(A, b[, x0, tol, maxiter, M, …]) | 
Use BIConjugate Gradient STABilized iteration to solve Ax = b. | 
cg(A, b[, x0, tol, maxiter, M, callback, atol]) | 
Use Conjugate Gradient iteration to solve Ax = b. | 
cgs(A, b[, x0, tol, maxiter, M, callback, atol]) | 
Use Conjugate Gradient Squared iteration to solve Ax = b. | 
gmres(A, b[, x0, tol, restart, maxiter, M, …]) | 
Use Generalized Minimal RESidual iteration to solve Ax = b. | 
lgmres(A, b[, x0, tol, maxiter, M, …]) | 
Solve a matrix equation using the LGMRES algorithm. | 
minres(A, b[, x0, shift, tol, maxiter, M, …]) | 
Use MINimum RESidual iteration to solve Ax=b | 
qmr(A, b[, x0, tol, maxiter, M1, M2, …]) | 
Use Quasi-Minimal Residual iteration to solve Ax = b. | 
gcrotmk(A, b[, x0, tol, maxiter, M, …]) | 
Solve a matrix equation using flexible GCROT(m,k) algorithm. | 
Iterative methods for least-squares problems:
lsqr(A, b[, damp, atol, btol, conlim, …]) | 
Find the least-squares solution to a large, sparse, linear system of equations. | 
lsmr(A, b[, damp, atol, btol, conlim, …]) | 
Iterative solver for least-squares problems. | 
Matrix factorizations¶
Eigenvalue problems:
eigs(A[, k, M, sigma, which, v0, ncv, …]) | 
Find k eigenvalues and eigenvectors of the square matrix A. | 
eigsh(A[, k, M, sigma, which, v0, ncv, …]) | 
Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. | 
lobpcg(A, X[, B, M, Y, tol, maxiter, …]) | 
Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) | 
Singular values problems:
svds(A[, k, ncv, tol, which, v0, maxiter, …]) | 
Compute the largest k singular values/vectors for a sparse matrix. | 
Complete or incomplete LU factorizations
splu(A[, permc_spec, diag_pivot_thresh, …]) | 
Compute the LU decomposition of a sparse, square matrix. | 
spilu(A[, drop_tol, fill_factor, drop_rule, …]) | 
Compute an incomplete LU decomposition for a sparse, square matrix. | 
SuperLU | 
LU factorization of a sparse matrix. | 
Exceptions¶
ArpackNoConvergence(msg, eigenvalues, …) | 
ARPACK iteration did not converge | 
ArpackError(info[, infodict]) | 
ARPACK error | 
