scipy.sparse.linalg.gcrotmk¶
-
scipy.sparse.linalg.
gcrotmk
(A, b, x0=None, tol=1e-05, maxiter=1000, M=None, callback=None, m=20, k=None, CU=None, discard_C=False, truncate='oldest', atol=None)[source]¶ Solve a matrix equation using flexible GCROT(m,k) algorithm.
Parameters: - A : {sparse matrix, dense matrix, LinearOperator}
The real or complex N-by-N matrix of the linear system.
- b : {array, matrix}
Right hand side of the linear system. Has shape (N,) or (N,1).
- x0 : {array, matrix}
Starting guess for the solution.
- tol, atol : float, optional
Tolerances for convergence,
norm(residual) <= max(tol*norm(b), atol)
. The default foratol
is tol.Warning
The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.
- maxiter : int, optional
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- M : {sparse matrix, dense matrix, LinearOperator}, optional
Preconditioner for A. The preconditioner should approximate the inverse of A. gcrotmk is a ‘flexible’ algorithm and the preconditioner can vary from iteration to iteration. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- callback : function, optional
User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
- m : int, optional
Number of inner FGMRES iterations per each outer iteration. Default: 20
- k : int, optional
Number of vectors to carry between inner FGMRES iterations. According to [2], good values are around m. Default: m
- CU : list of tuples, optional
List of tuples
(c, u)
which contain the columns of the matrices C and U in the GCROT(m,k) algorithm. For details, see [2]. The list given and vectors contained in it are modified in-place. If not given, start from empty matrices. Thec
elements in the tuples can beNone
, in which case the vectors are recomputed viac = A u
on start and orthogonalized as described in [3].- discard_C : bool, optional
Discard the C-vectors at the end. Useful if recycling Krylov subspaces for different linear systems.
- truncate : {‘oldest’, ‘smallest’}, optional
Truncation scheme to use. Drop: oldest vectors, or vectors with smallest singular values using the scheme discussed in [1,2]. See [2] for detailed comparison. Default: ‘oldest’
Returns: - x : array or matrix
The solution found.
- info : int
Provides convergence information:
- 0 : successful exit
- >0 : convergence to tolerance not achieved, number of iterations
References
[1] E. de Sturler, ‘’Truncation strategies for optimal Krylov subspace methods’‘, SIAM J. Numer. Anal. 36, 864 (1999). [2] (1, 2, 3, 4) J.E. Hicken and D.W. Zingg, ‘’A simplified and flexible variant of GCROT for solving nonsymmetric linear systems’‘, SIAM J. Sci. Comput. 32, 172 (2010). [3] (1, 2) M.L. Parks, E. de Sturler, G. Mackey, D.D. Johnson, S. Maiti, ‘’Recycling Krylov subspaces for sequences of linear systems’‘, SIAM J. Sci. Comput. 28, 1651 (2006).