# scipy.optimize.ridder¶

scipy.optimize.ridder(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True)[source]

Find a root of a function in an interval.

Parameters: f : function Python function returning a number. f must be continuous, and f(a) and f(b) must have opposite signs. a : number One end of the bracketing interval [a,b]. b : number The other end of the bracketing interval [a,b]. xtol : number, optional The computed root x0 will satisfy np.allclose(x, x0, atol=xtol, rtol=rtol), where x is the exact root. The parameter must be nonnegative. rtol : number, optional The computed root x0 will satisfy np.allclose(x, x0, atol=xtol, rtol=rtol), where x is the exact root. The parameter cannot be smaller than its default value of 4*np.finfo(float).eps. maxiter : number, optional if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0. args : tuple, optional containing extra arguments for the function f. f is called by apply(f, (x)+args). full_output : bool, optional If full_output is False, the root is returned. If full_output is True, the return value is (x, r), where x is the root, and r is a RootResults object. disp : bool, optional If True, raise RuntimeError if the algorithm didn’t converge. x0 : float Zero of f between a and b. r : RootResults (present if full_output = True) Object containing information about the convergence. In particular, r.converged is True if the routine converged.

fixed_point
scalar fixed-point finder

Notes

Uses [Ridders1979] method to find a zero of the function f between the arguments a and b. Ridders’ method is faster than bisection, but not generally as fast as the Brent routines. [Ridders1979] provides the classic description and source of the algorithm. A description can also be found in any recent edition of Numerical Recipes.

The routine used here diverges slightly from standard presentations in order to be a bit more careful of tolerance.

References

 [Ridders1979] (1, 2, 3) Ridders, C. F. J. “A New Algorithm for Computing a Single Root of a Real Continuous Function.” IEEE Trans. Circuits Systems 26, 979-980, 1979.

Examples

>>> def f(x):
...     return (x**2 - 1)

>>> from scipy import optimize

>>> root = optimize.ridder(f, 0, 2)
>>> root
1.0

>>> root = optimize.ridder(f, -2, 0)
>>> root
-1.0


#### Previous topic

scipy.optimize.brenth

#### Next topic

scipy.optimize.bisect