scipy.optimize.brentq¶
-
scipy.optimize.brentq(f, a, b, args=(), xtol=2e-12, rtol=8.881784197001252e-16, maxiter=100, full_output=False, disp=True)[source]¶ Find a root of a function in a bracketing interval using Brent’s method.
Uses the classic Brent’s method to find a zero of the function f on the sign changing interval [a , b]. Generally considered the best of the rootfinding routines here. It is a safe version of the secant method that uses inverse quadratic extrapolation. Brent’s method combines root bracketing, interval bisection, and inverse quadratic interpolation. It is sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973) claims convergence is guaranteed for functions computable within [a,b].
[Brent1973] provides the classic description of the algorithm. Another description can be found in a recent edition of Numerical Recipes, including [PressEtal1992]. Another description is at http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to understand the algorithm just by reading our code. Our code diverges a bit from standard presentations: we choose a different formula for the extrapolation step.
Parameters: - f : function
Python function returning a number. The function \(f\) must be continuous, and \(f(a)\) and \(f(b)\) must have opposite signs.
- a : number
One end of the bracketing interval \([a, b]\).
- b : number
The other end of the bracketing interval \([a, b]\).
- xtol : number, optional
The computed root
x0will satisfynp.allclose(x, x0, atol=xtol, rtol=rtol), wherexis the exact root. The parameter must be nonnegative. For nice functions, Brent’s method will often satisfy the above condition withxtol/2andrtol/2. [Brent1973]- rtol : number, optional
The computed root
x0will satisfynp.allclose(x, x0, atol=xtol, rtol=rtol), wherexis the exact root. The parameter cannot be smaller than its default value of4*np.finfo(float).eps. For nice functions, Brent’s method will often satisfy the above condition withxtol/2andrtol/2. [Brent1973]- maxiter : number, optional
if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0.
- args : tuple, optional
containing extra arguments for the function f. f is called by
apply(f, (x)+args).- full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is
(x, r), where x is the root, and r is a RootResults object.- disp : bool, optional
If True, raise RuntimeError if the algorithm didn’t converge.
Returns: - x0 : float
Zero of f between a and b.
- r : RootResults (present if
full_output = True) Object containing information about the convergence. In particular,
r.convergedis True if the routine converged.
See also
multivariatefmin,fmin_powell,fmin_cg,fmin_bfgs,fmin_ncgnonlinearleastsqconstrainedfmin_l_bfgs_b,fmin_tnc,fmin_cobylaglobalbasinhopping,brute,differential_evolutionlocalfminbound,brent,golden,bracketn-dimensionalfsolveone-dimensionalbrenth,ridder,bisect,newtonscalarfixed_point
Notes
f must be continuous. f(a) and f(b) must have opposite signs.
References
[Brent1973] (1, 2, 3, 4) Brent, R. P., Algorithms for Minimization Without Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4. [PressEtal1992] (1, 2) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 352-355, 1992. Section 9.3: “Van Wijngaarden-Dekker-Brent Method.” Examples
>>> def f(x): ... return (x**2 - 1)
>>> from scipy import optimize
>>> root = optimize.brentq(f, -2, 0) >>> root -1.0
>>> root = optimize.brentq(f, 0, 2) >>> root 1.0
