scipy.stats.ttest_ind_from_stats¶
- 
scipy.stats.ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True)[source]¶
- T-test for means of two independent samples from descriptive statistics. - This is a two-sided test for the null hypothesis that two independent samples have identical average (expected) values. - Parameters: - mean1 : array_like - The mean(s) of sample 1. - std1 : array_like - The standard deviation(s) of sample 1. - nobs1 : array_like - The number(s) of observations of sample 1. - mean2 : array_like - The mean(s) of sample 2 - std2 : array_like - The standard deviations(s) of sample 2. - nobs2 : array_like - The number(s) of observations of sample 2. - equal_var : bool, optional - Returns: - statistic : float or array - The calculated t-statistics - pvalue : float or array - The two-tailed p-value. - See also - Notes - New in version 0.16.0. - References - [R706] - (1, 2) http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test - [R707] - (1, 2) http://en.wikipedia.org/wiki/Welch%27s_t_test - Examples - Suppose we have the summary data for two samples, as follows: - Sample Sample Size Mean Variance Sample 1 13 15.0 87.5 Sample 2 11 12.0 39.0 - Apply the t-test to this data (with the assumption that the population variances are equal): - >>> from scipy.stats import ttest_ind_from_stats >>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13, ... mean2=12.0, std2=np.sqrt(39.0), nobs2=11) Ttest_indResult(statistic=0.90513580933102689, pvalue=0.37519967975814872) - For comparison, here is the data from which those summary statistics were taken. With this data, we can compute the same result using - scipy.stats.ttest_ind:- >>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26]) >>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21]) >>> from scipy.stats import ttest_ind >>> ttest_ind(a, b) Ttest_indResult(statistic=0.905135809331027, pvalue=0.37519967975814861) 
