scipy.special.shichi¶
-
scipy.special.
shichi
(x, out=None) = <ufunc 'shichi'>¶ Hyperbolic sine and cosine integrals.
The hyperbolic sine integral is
\[\int_0^x \frac{\sinh{t}}{t}dt\]and the hyperbolic cosine integral is
\[\gamma + \log(x) + \int_0^x \frac{\cosh{t} - 1}{t} dt\]where \(\gamma\) is Euler’s constant and \(\log\) is the principle branch of the logarithm.
Parameters: x : array_like
Real or complex points at which to compute the hyperbolic sine and cosine integrals.
Returns: si : ndarray
Hyperbolic sine integral at
x
ci : ndarray
Hyperbolic cosine integral at
x
Notes
For real arguments with
x < 0
,chi
is the real part of the hyperbolic cosine integral. For such pointschi(x)
andchi(x + 0j)
differ by a factor of1j*pi
.For real arguments the function is computed by calling Cephes’ [R568] shichi routine. For complex arguments the algorithm is based on Mpmath’s [R569] shi and chi routines.
References
[R568] (1, 2) Cephes Mathematical Functions Library, http://www.netlib.org/cephes/index.html [R569] (1, 2) Fredrik Johansson and others. “mpmath: a Python library for arbitrary-precision floating-point arithmetic” (Version 0.19) http://mpmath.org/