scipy.interpolate.bisplrep¶
-
scipy.interpolate.
bisplrep
(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, kx=3, ky=3, task=0, s=None, eps=1e-16, tx=None, ty=None, full_output=0, nxest=None, nyest=None, quiet=1)[source]¶ Find a bivariate B-spline representation of a surface.
Given a set of data points (x[i], y[i], z[i]) representing a surface z=f(x,y), compute a B-spline representation of the surface. Based on the routine SURFIT from FITPACK.
Parameters: x, y, z : ndarray
Rank-1 arrays of data points.
w : ndarray, optional
Rank-1 array of weights. By default
w=np.ones(len(x))
.xb, xe : float, optional
End points of approximation interval in x. By default
xb = x.min(), xe=x.max()
.yb, ye : float, optional
End points of approximation interval in y. By default
yb=y.min(), ye = y.max()
.kx, ky : int, optional
The degrees of the spline (1 <= kx, ky <= 5). Third order (kx=ky=3) is recommended.
task : int, optional
If task=0, find knots in x and y and coefficients for a given smoothing factor, s. If task=1, find knots and coefficients for another value of the smoothing factor, s. bisplrep must have been previously called with task=0 or task=1. If task=-1, find coefficients for a given set of knots tx, ty.
s : float, optional
A non-negative smoothing factor. If weights correspond to the inverse of the standard-deviation of the errors in z, then a good s-value should be found in the range
(m-sqrt(2*m),m+sqrt(2*m))
where m=len(x).eps : float, optional
A threshold for determining the effective rank of an over-determined linear system of equations (0 < eps < 1). eps is not likely to need changing.
tx, ty : ndarray, optional
Rank-1 arrays of the knots of the spline for task=-1
full_output : int, optional
Non-zero to return optional outputs.
nxest, nyest : int, optional
Over-estimates of the total number of knots. If None then
nxest = max(kx+sqrt(m/2),2*kx+3)
,nyest = max(ky+sqrt(m/2),2*ky+3)
.quiet : int, optional
Non-zero to suppress printing of messages. This parameter is deprecated; use standard Python warning filters instead.
Returns: tck : array_like
A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and coefficients (c) of the bivariate B-spline representation of the surface along with the degree of the spline.
fp : ndarray
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised.
msg : str
A message corresponding to the integer flag, ier.
See also
splprep
,splrep
,splint
,sproot
,splev
,UnivariateSpline
,BivariateSpline
Notes
See
bisplev
to evaluate the value of the B-spline given its tck representation.References
[R97] Dierckx P.:An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283. [R98] Dierckx P.:An algorithm for surface fitting with spline functions report tw50, Dept. Computer Science,K.U.Leuven, 1980. [R99] Dierckx P.:Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993.