Contents
SciPy 0.8.0 is the culmination of 17 months of hard work. It contains many new features, numerous bug-fixes, improved test coverage and better documentation. There have been a number of deprecations and API changes in this release, which are documented below. All users are encouraged to upgrade to this release, as there are a large number of bug-fixes and optimizations. Moreover, our development attention will now shift to bug-fix releases on the 0.8.x branch, and on adding new features on the development trunk. This release requires Python 2.4 - 2.6 and NumPy 1.4.1 or greater.
Please note that SciPy is still considered to have “Beta” status, as we work toward a SciPy 1.0.0 release. The 1.0.0 release will mark a major milestone in the development of SciPy, after which changing the package structure or API will be much more difficult. Whilst these pre-1.0 releases are considered to have “Beta” status, we are committed to making them as bug-free as possible.
However, until the 1.0 release, we are aggressively reviewing and refining the functionality, organization, and interface. This is being done in an effort to make the package as coherent, intuitive, and useful as possible. To achieve this, we need help from the community of users. Specifically, we need feedback regarding all aspects of the project - everything - from which algorithms we implement, to details about our function’s call signatures.
Python 3 compatibility is planned and is currently technically feasible, since Numpy has been ported. However, since the Python 3 compatible Numpy 1.5 has not been released yet, support for Python 3 in Scipy is not yet included in Scipy 0.8. SciPy 0.9, planned for fall 2010, will very likely include experimental support for Python 3.
SciPy documentation is greatly improved.
Concern correlate, correlate2d, convolve and convolve2d. If the second input is larger than the first input, the inputs are swapped before calling the underlying computation routine. This behavior is deprecated, and will be removed in scipy 0.9.0.
The modules helpmod, ppimport and pexec from scipy.misc are deprecated. They will be removed from SciPy in version 0.9.
New realtransforms have been added, namely dct and idct for Discrete Cosine Transform; type I, II and III are available.
fft functions can now handle single precision inputs as well: fft(x) will return a single precision array if x is single precision.
At the moment, for FFT sizes that are not composites of 2, 3, and 5, the transform is computed internally in double precision to avoid rounding error in FFTPACK.
The outputs should now correspond to their matlab and R counterparts, and do what most people expect if the old_behavior=False argument is passed:
Several improvements to the chirp function in scipy.signal were made:
A new function, sweep_poly, was added.
The functions cho_solve_banded, circulant, companion, hadamard and leslie were added to scipy.linalg.
The function block_diag was enhanced to accept scalar and 1D arguments, along with the usual 2D arguments.
The curve_fit function has been added; it takes a function and uses non-linear least squares to fit that to the provided data.
The leastsq and fsolve functions now return an array of size one instead of a scalar when solving for a single parameter.
The lsqr function was added to scipy.sparse. This routine finds a least-squares solution to a large, sparse, linear system of equations.
A naive implementation of SVD for sparse matrices is available in scipy.sparse.linalg.eigen.arpack. It is based on using an symmetric solver on <A, A>, and as such may not be very precise.
The keyword argument disp was added to the function scipy.constants.find, with the default value True. When disp is True, the behavior is the same as in Scipy version 0.7. When False, the function returns the list of keys instead of printing them. (In SciPy version 0.9, the default will be reversed.)
Scipy now wraps SuperLU version 4.0, which supports incomplete sparse LU decompositions. These can be accessed via scipy.sparse.linalg.spilu. Upgrade to SuperLU 4.0 also fixes some known bugs.
We’ve rewritten the matlab file reader in Cython and it should now read matlab files at around the same speed that Matlab does.
The reader reads matlab named and anonymous functions, but it can’t write them.
Until scipy 0.8.0 we have returned arrays of matlab structs as numpy object arrays, where the objects have attributes named for the struct fields. As of 0.8.0, we return matlab structs as numpy structured arrays. You can get the older behavior by using the optional struct_as_record=False keyword argument to scipy.io.loadmat and friends.
There is an inconsistency in the matlab file writer, in that it writes numpy 1D arrays as column vectors in matlab 5 files, and row vectors in matlab 4 files. We will change this in the next version, so both write row vectors. There is a FutureWarning when calling the writer to warn of this change; for now we suggest using the oned_as='row' keyword argument to scipy.io.savemat and friends.
Values of orthogonal polynomials can be evaluated with new vectorized functions in scipy.special: eval_legendre, eval_chebyt, eval_chebyu, eval_chebyc, eval_chebys, eval_jacobi, eval_laguerre, eval_genlaguerre, eval_hermite, eval_hermitenorm, eval_gegenbauer, eval_sh_legendre, eval_sh_chebyt, eval_sh_chebyu, eval_sh_jacobi. This is faster than constructing the full coefficient representation of the polynomials, which was previously the only available way.
Note that the previous orthogonal polynomial routines will now also invoke this feature, when possible.
scipy.special.lambertw can now be used for evaluating the Lambert W function.
Implementation of scipy.special.hyp2f1 for real parameters was revised. The new version should produce accurate values for all real parameters.
The scipy.interpolate.Rbf class now accepts a callable as input for the “function” argument, in addition to the built-in radial basis functions which can be selected with a string argument.
scipy.stsci: the package was removed
The module scipy.misc.limits was removed.
The IO code in both NumPy and SciPy is being extensively reworked. NumPy will be where basic code for reading and writing NumPy arrays is located, while SciPy will house file readers and writers for various data formats (data, audio, video, images, matlab, etc.).
Several functions in scipy.io are removed in the 0.8.0 release including: npfile, save, load, create_module, create_shelf, objload, objsave, fopen, read_array, write_array, fread, fwrite, bswap, packbits, unpackbits, and convert_objectarray. Some of these functions have been replaced by NumPy’s raw reading and writing capabilities, memory-mapping capabilities, or array methods. Others have been moved from SciPy to NumPy, since basic array reading and writing capability is now handled by NumPy.