This is documentation for an old release of SciPy (version 0.9.0). Read this page in the documentation of the latest stable release (version 1.15.1).

scipy.sparse.linalg

Sparse Linear Algebra

The submodules of sparse.linalg:
  1. eigen: sparse eigenvalue problem solvers
  2. isolve: iterative methods for solving linear systems
  3. dsolve: direct factorization methods for solving linear systems

Examples

Functions

aslinearoperator(A) Return A as a LinearOperator.
bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BIConjugate Gradient iteration to solve A x = b
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) Use BIConjugate Gradient STABilized iteration to solve A x = b
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient iteration to solve A x = b
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient Squared iteration to solve A x = b
eigs(A[, k, M, sigma, which, v0, ncv, ...]) Find k eigenvalues and eigenvectors of the square matrix A.
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) Find k eigenvalues and eigenvectors of the real symmetric square matrix A.
factorized(A) Return a fuction for solving a sparse linear system, with A pre-factorized.
gmres(A, b[, x0, tol, restart, maxiter, ...]) Use Generalized Minimal RESidual iteration to solve A x = b.
isspmatrix(x)
lgmres(A, b[, x0, tol, maxiter, M, ...]) Solve a matrix equation using the LGMRES algorithm.
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) Solve symmetric partial eigenproblems with optional preconditioning
lsqr(A, b[, damp, atol, btol, conlim, ...]) Find the least-squares solution to a large, sparse, linear system of equations.
minres(A, b[, x0, shift, tol, maxiter, ...]) Use MINimum RESidual iteration to solve Ax=b
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) Use Quasi-Minimal Residual iteration to solve A x = b
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) Compute an incomplete LU decomposition for a sparse, square matrix A.
splu(A[, permc_spec, diag_pivot_thresh, ...]) Compute the LU decomposition of a sparse, square matrix.
spsolve(A, b[, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b
svds(A[, k, ncv, tol]) Compute k singular values/vectors for a sparse matrix using ARPACK.
use_solver(**kwargs) Valid keyword arguments with defaults (other ignored):

Classes

LinearOperator(shape, matvec[, rmatvec, ...]) Common interface for performing matrix vector products
Tester Nose test runner.
csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix

Exceptions

ArpackError(info[, infodict]) ARPACK error
ArpackNoConvergence(msg, eigenvalues, ...) ARPACK iteration did not converge

Table Of Contents

Previous topic

scipy.sparse.lil

Next topic

scipy.sparse.sparsetools

This Page