A sparse matrix in COOrdinate format.
Also known as the ‘ijv’ or ‘triplet’ format.
Where A[ij[0][k], ij[1][k] = data[k]. When shape is not specified, it is inferred from the index arrays
Notes
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> coo_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = array([0,3,1,0])
>>> col = array([0,3,1,2])
>>> data = array([4,5,7,9])
>>> coo_matrix( (data,(row,col)), shape=(4,4) ).todense()
matrix([[4, 0, 9, 0],
[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])
>>> # example with duplicates
>>> row = array([0,0,1,3,1,0,0])
>>> col = array([0,2,1,3,1,0,0])
>>> data = array([1,1,1,1,1,1,1])
>>> coo_matrix( (data,(row,col)), shape=(4,4)).todense()
matrix([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
Methods
asformat | |
asfptype | |
astype | |
conj | |
conjugate | |
copy | Generic (shallow and deep) copying operations. |
diagonal | |
dot | |
getH | |
get_shape | |
getcol | |
getformat | |
getmaxprint | |
getnnz | |
getrow | |
mean | |
multiply | |
nonzero | |
reshape | |
set_shape | |
setdiag | |
sum | |
toarray | |
tobsr | |
tocoo | |
tocsc | |
tocsr | |
todense | |
todia | |
todok | |
tolil | |
transpose |