This is documentation for an old release of SciPy (version 0.9.0). Read this page in the documentation of the latest stable release (version 1.15.1).

scipy.sparse.construct

Functions to construct sparse matrices

Functions

bmat(blocks[, format, dtype]) Build a sparse matrix from sparse sub-blocks
eye(m, n[, k, dtype, format]) eye(m, n) returns a sparse (m x n) matrix where the k-th diagonal
hstack(blocks[, format, dtype]) Stack sparse matrices horizontally (column wise)
identity(n[, dtype, format]) Identity matrix in sparse format
kron(A, B[, format]) kronecker product of sparse matrices A and B
kronsum(A, B[, format]) kronecker sum of sparse matrices A and B
rand(m, n[, density, format, dtype]) Generate a sparse matrix of the given shape and density with uniformely distributed values.
spdiags(data, diags, m, n[, format]) Return a sparse matrix from diagonals.
upcast(*args) Returns the nearest supported sparse dtype for the combination of one or more types.
vstack(blocks[, format, dtype]) Stack sparse matrices vertically (row wise)
warn(message[, category, stacklevel]) Issue a warning, or maybe ignore it or raise an exception.

Classes

bsr_matrix(arg1[, shape, dtype, copy, blocksize]) Block Sparse Row matrix
coo_matrix(arg1[, shape, dtype, copy]) A sparse matrix in COOrdinate format.
csc_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Column matrix
csr_matrix(arg1[, shape, dtype, copy]) Compressed Sparse Row matrix
dia_matrix(arg1[, shape, dtype, copy]) Sparse matrix with DIAgonal storage
lil_matrix(arg1[, shape, dtype, copy]) Row-based linked list sparse matrix

Previous topic

scipy.sparse.compressed

Next topic

scipy.sparse.coo

This Page