This is documentation for an old release of SciPy (version 0.9.0). Read this page in the documentation of the latest stable release (version 1.15.1).
Functions to construct sparse matrices
Functions
bmat(blocks[, format, dtype]) | Build a sparse matrix from sparse sub-blocks |
eye(m, n[, k, dtype, format]) | eye(m, n) returns a sparse (m x n) matrix where the k-th diagonal |
hstack(blocks[, format, dtype]) | Stack sparse matrices horizontally (column wise) |
identity(n[, dtype, format]) | Identity matrix in sparse format |
kron(A, B[, format]) | kronecker product of sparse matrices A and B |
kronsum(A, B[, format]) | kronecker sum of sparse matrices A and B |
rand(m, n[, density, format, dtype]) | Generate a sparse matrix of the given shape and density with uniformely distributed values. |
spdiags(data, diags, m, n[, format]) | Return a sparse matrix from diagonals. |
upcast(*args) | Returns the nearest supported sparse dtype for the combination of one or more types. |
vstack(blocks[, format, dtype]) | Stack sparse matrices vertically (row wise) |
warn(message[, category, stacklevel]) | Issue a warning, or maybe ignore it or raise an exception. |
Classes
bsr_matrix(arg1[, shape, dtype, copy, blocksize]) | Block Sparse Row matrix |
coo_matrix(arg1[, shape, dtype, copy]) | A sparse matrix in COOrdinate format. |
csc_matrix(arg1[, shape, dtype, copy]) | Compressed Sparse Column matrix |
csr_matrix(arg1[, shape, dtype, copy]) | Compressed Sparse Row matrix |
dia_matrix(arg1[, shape, dtype, copy]) | Sparse matrix with DIAgonal storage |
lil_matrix(arg1[, shape, dtype, copy]) | Row-based linked list sparse matrix |