# scipy.linalg.eigvalsh¶

scipy.linalg.eigvalsh(a, b=None, lower=True, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1)

Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.

Find eigenvalues w of matrix a, where b is positive definite:

```              a v[:,i] = w[i] b v[:,i]
v[i,:].conj() a v[:,i] = w[i]
v[i,:].conj() b v[:,i] = 1```
Parameters : a : array, shape (M, M) A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed. b : array, shape (M, M) A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) turbo : boolean Use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if eigvals=None) eigvals : tuple (lo, hi) Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: 0 <= lo < hi <= M-1. If omitted, all eigenvalues and eigenvectors are returned. type: integer : Specifies the problem type to be solved: type = 1: a v[:,i] = w[i] b v[:,i] type = 2: a b v[:,i] = w[i] v[:,i] type = 3: b a v[:,i] = w[i] v[:,i] overwrite_a : boolean Whether to overwrite data in a (may improve performance) overwrite_b : boolean Whether to overwrite data in b (may improve performance) w : real array, shape (N,) The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated according to its multiplicity. Raises LinAlgError if eigenvalue computation does not converge, : an error occurred, or b matrix is not definite positive. Note that : if input matrices are not symmetric or hermitian, no error is reported : but results will be wrong. :

eigvals
eigenvalues of general arrays
eigh
eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig
eigenvalues and right eigenvectors for non-symmetric arrays

#### Previous topic

scipy.linalg.eigh

#### Next topic

scipy.linalg.eig_banded