scipy.linalg.eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False, select='a', select_range=None, max_ev=0)

Solve real symmetric or complex hermitian band matrix eigenvalue problem.

Find eigenvalues w and optionally right eigenvectors v of a:

a v[:,i] = w[i] v[:,i]
v.H v    = identity

The matrix a is stored in ab either in lower diagonal or upper diagonal ordered form:

ab[u + i - j, j] == a[i,j] (if upper form; i <= j) ab[ i - j, j] == a[i,j] (if lower form; i >= j)

Example of ab (shape of a is (6,6), u=2):

upper form:
*   *   a02 a13 a24 a35
*   a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55

lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 *   *

Cells marked with * are not used.

Parameters :

a_band : array, shape (M, u+1)

Banded matrix whose eigenvalues to calculate

lower : boolean

Is the matrix in the lower form. (Default is upper form)

eigvals_only : boolean

Compute only the eigenvalues and no eigenvectors. (Default: calculate also eigenvectors)

overwrite_a_band: :

Discard data in a_band (may enhance performance)

select: {‘a’, ‘v’, ‘i’} :

Which eigenvalues to calculate




All eigenvalues


Eigenvalues in the interval (min, max]


Eigenvalues with indices min <= i <= max

select_range : (min, max)

Range of selected eigenvalues

max_ev : integer

For select==’v’, maximum number of eigenvalues expected. For other values of select, has no meaning.

In doubt, leave this parameter untouched.

Returns :

w : array, shape (M,)

The eigenvalues, in ascending order, each repeated according to its multiplicity.

v : double or complex double array, shape (M, M)

The normalized eigenvector corresponding to the eigenvalue w[i] is the column v[:,i].

Raises LinAlgError if eigenvalue computation does not converge :

Previous topic


Next topic


This Page