A Tukey-Lambda continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
lam : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | tukeylambda.rvs(lam,loc=0,scale=1,size=1) :
tukeylambda.pdf(x,lam,loc=0,scale=1) :
tukeylambda.cdf(x,lam,loc=0,scale=1) :
tukeylambda.sf(x,lam,loc=0,scale=1) :
tukeylambda.ppf(q,lam,loc=0,scale=1) :
tukeylambda.isf(q,lam,loc=0,scale=1) :
tukeylambda.stats(lam,loc=0,scale=1,moments=’mv’) :
tukeylambda.entropy(lam,loc=0,scale=1) :
tukeylambda.fit(data,lam,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = tukeylambda(lam,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = tukeylambda.numargs
>>> [ lam ] = [0.9,]*numargs
>>> rv = tukeylambda(lam)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = tukeylambda.cdf(x,lam)
>>> h=plt.semilogy(np.abs(x-tukeylambda.ppf(prb,c))+1e-20)
Random number generation
>>> R = tukeylambda.rvs(lam,size=100)
Tukey-Lambda distribution
A flexible distribution ranging from Cauchy (lam=-1) to logistic (lam=0.0) to approx Normal (lam=0.14) to u-shape (lam = 0.5) to Uniform from -1 to 1 (lam = 1)