A truncated normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
a,b : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | truncnorm.rvs(a,b,loc=0,scale=1,size=1) :
truncnorm.pdf(x,a,b,loc=0,scale=1) :
truncnorm.cdf(x,a,b,loc=0,scale=1) :
truncnorm.sf(x,a,b,loc=0,scale=1) :
truncnorm.ppf(q,a,b,loc=0,scale=1) :
truncnorm.isf(q,a,b,loc=0,scale=1) :
truncnorm.stats(a,b,loc=0,scale=1,moments=’mv’) :
truncnorm.entropy(a,b,loc=0,scale=1) :
truncnorm.fit(data,a,b,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = truncnorm(a,b,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = truncnorm.numargs
>>> [ a,b ] = [0.9,]*numargs
>>> rv = truncnorm(a,b)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = truncnorm.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-truncnorm.ppf(prb,c))+1e-20)
Random number generation
>>> R = truncnorm.rvs(a,b,size=100)
Truncated Normal distribution.
The standard form of this distribution is a standard normal truncated to the range [a,b] — notice that a and b are defined over the domain of the standard normal. To convert clip values for a specific mean and standard deviation use a,b = (myclip_a-my_mean)/my_std, (myclip_b-my_mean)/my_std