A Johnson SU continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
a,b : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | johnsonsu.rvs(a,b,loc=0,scale=1,size=1) :
johnsonsu.pdf(x,a,b,loc=0,scale=1) :
johnsonsu.cdf(x,a,b,loc=0,scale=1) :
johnsonsu.sf(x,a,b,loc=0,scale=1) :
johnsonsu.ppf(q,a,b,loc=0,scale=1) :
johnsonsu.isf(q,a,b,loc=0,scale=1) :
johnsonsu.stats(a,b,loc=0,scale=1,moments=’mv’) :
johnsonsu.entropy(a,b,loc=0,scale=1) :
johnsonsu.fit(data,a,b,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = johnsonsu(a,b,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = johnsonsu.numargs
>>> [ a,b ] = [0.9,]*numargs
>>> rv = johnsonsu(a,b)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = johnsonsu.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-johnsonsu.ppf(prb,c))+1e-20)
Random number generation
>>> R = johnsonsu.rvs(a,b,size=100)
Johnson SU distribution
johnsonsu.pdf(x,a,b) = b/sqrt(x**2+1) * phi(a + b*log(x+sqrt(x**2+1))) for all x, a,b > 0, and phi is the normal pdf.